
Achieving Uniform Performance and Maximizing Throughput
in the Presence of Heterogeneity

Krishna K. Rangan†‡ Michael D. Powell‡
†Harvard University

33 Oxford St., Cambridge, MA 02138

{kkrangan,guyeon,dbrooks}@eecs.harvard.edu

Gu-Yeon Wei† David Brooks†
‡Intel Massachusetts

77 Reed Road, Hudson, MA 01749

{krishna.rangan,michael.d.powell}@intel.com

Abstract
Continued scaling of process technologies is critical to sustain-
ing improvements in processor frequencies and performance. How-
ever, shrinking process technologies exacerbates process variations
– the deviation of process parameters from their target specifica-
tions. In the context of multi-core CMPs, which are implemented
to feature homogeneous cores, within-die process variations result
in substantially different core frequencies. Exposing such process-
variation induced heterogeneity interferes with the norm of market-
ing chips at a single frequency. Further, application performance
is undesirably dictated by the frequency of the core it is running
on. To work around these challenges, a single uniform frequency,
dictated by the slowest core, is currently chosen as the chip fre-
quency sacrificing the increased performance capabilities of cores
that could operate at higher frequencies. In this paper, we propose
choosing the mean frequency across all cores, in lieu of the min-
imum frequency, as the single-frequency to use as the chip sales
frequency. We examine several scheduling algorithms implemented
below the O/S in hardware/firmware that guarantee minimum ap-
plication performance near that of the average frequency, by mask-
ing process-variation induced heterogeneity from the end-user. We
show that our Throughput-Driven Fairness (TDF) scheduling pol-
icy improves throughput by an average of 12% compared to a naive
fairness scheme (round-robin) for frequency-sensitive applications.
At the same time, TDF allows 98% of chips to maintain minimum
performance at or above 90% of that expected at the mean fre-
quency, providing a single uniform performance level to present
for the chip.

1. Introduction
Continued scaling of process technologies is critical to sustaining
improvements in processor performance and energy-efficiency. In-
deed, Intel’s Tick-Tock schedule for releasing processors with ever-
increasing performance relies as much on shrinking process tech-
nologies as it does on innovations in microprocessor architecture
for continued performance and power improvements [4]. However,
shrinking process technologies exacerbate process variations–the
deviation of process parameters from their target specifications–
and can significantly arrest the benefits of scaling. Process varia-
tions affect two key transistor parameters, gate length and threshold
voltage, that impact the speed and power of the chip. Large varia-
tion of these key transistor parameters results in high variation of
transistor speeds across the chip.

These variations, in conjunction with large die size and high
core counts, result in a spread of maximum frequencies (fmax)
across different cores in a chip. An example of observed fmax vari-
ation in silicon at three voltages for an 80-core Intel test chip [6]

is shown in Figure 1. At a supply voltage of 1.2 V, there is a
28% variation between the fastest core’s frequency of 7.3 GHz
and slowest core’s frequency of 5.7 GHz, and this grows to 59% at
0.8V. While it may be possible to increase the frequency of slower
cores through voltage scaling, slower cores may experience suffi-
cient process variation that no feasible voltage increase will raise
their frequency to near that of the fastest cores. Power-budget con-
straints, particularly if all cores share one or a few voltage domains,
and the narrow range between minimum and maximum operating
voltages (Vmin and Vmax) in modern processes limit the poten-
tial of voltage increases to mitigate process variations and the re-
sulting inter-core frequency variation. While not targeting process
variations, Intel R© Turbo Boost Technology provides an example of
these power-budget limitations; the voltage and frequency of one or
a few cores can be increased to improve single-thread performance
but only at the expense of powering-off other cores [3]. Turbo Boost
illustrates that power budgets are already at the point where all or
even most cores cannot run at both maximum frequency and ele-
vated voltage.

The conventional solution to manage inter-core frequency varia-
tion is to ignore the variation and set the frequency of the entire chip
to be that of the slowest core. We call this solution min-max because
the chip operates at the minimum maximum frequency among all
cores. Min-max sacrifices substantial performance to achieve sim-
plicity by running all cores at the frequency of the slowest core.

An alternative solution to manage inter-core frequency varia-
tion allows each core (or group of a few cores) to operate in its
own frequency domain. With one frequency domain per core, we
can recover all performance opportunity sacrificed by min-max
because each core can run at its maximum frequency (within the
chip-level power budget). However, heterogeneous-core-frequency
(HCF) configuration disrupts the appearance of uniform perfor-
mance for all cores, causing fairness problems in multi-process sit-
uations. HCF implementations interfere with processor marketing
strategies that are based on a single performance number (typically
sales frequency). For a variety of reasons we discuss in Section 2.3,
a single performance number is desirable to CPU vendors.

Clearly, there is a need not only to exploit HCF configurations
to boost performance of applications, but also to provide a single,
uniform-level of performance to the O/S and end-users, as though
the processor were simply operating at a single, higher frequency.
Note that the issues of process fairness and the appearance of a sin-
gle uniform frequency are intrinsically linked because the appear-
ance of a single frequency across all cores implies that each process
is receiving an appropriate share of resources. In this paper, we
show that the appearance to users and the O/S of a single uniform
performance metric (frequency) across cores can be approximated
while reaping the performance benefits of allowing individual cores

978-1-4244-9434-7/11/$26.00 ©2011 IEEE 3

Fr
eq

ue
nc

y
(G

H
z)

Core ID

Measured 50oC

2

3

4

5

6

7

0 10 20 30 40 50 60 70 80

5.7
GHz

7.3 GHz

1.2V 0.9V 0.8V

Figure 1: Measured process variations on Intel’s 80-core processor showing
substantially different core frequencies [6] (used with permission).

to be clocked at frequencies higher than that allowed by min-max.
We propose to achieve both goals with the use of thread scheduling
policies implemented at fine temporal scheduling windows, below
the O/S in the hardware/firmware. Our scheduling policies seek ap-
pearance of uniform, single frequency (for a HCF chip), near the
arithmetic mean of all cores’ frequencies, which we call apparent
mean frequency (AMF). Performance guarantees near the AMF fre-
quency, which is higher than the min-max frequency, increase the
number of premium chips that can be sold for higher prices.

One natural solution to achieve fairness in scheduling while
clocking each core at its individual maximum frequency is naively
fairness-driven, round-robin scheduling of processes across each
core in the chip. Round-robin scheduling creates the appearance
of a uniform, single-frequency at AMF since each process spends
equal time on each core. Unfortunately, as we demonstrate later,
brute-force round-robin reschedulings, largely oblivious to appli-
cation performance requirements, miss opportunities to substan-
tially increase throughput without sacrificing performance of any
process. On the other hand, if maximum throughput is our goal,
then an alternative to round-robin is throughput-driven scheduling.
However, our results show that throughput-driven scheduling in-
creases average system throughput at the cost of hurting perfor-
mance of some processes. Thus, throughput-driven scheduling is
unfair, as certain processes experience performance below the de-
sired AMF-level, and is inconsistent with our goal of maximizing
performance yet providing a single, uniform-level of performance
for all processes.

To achieve fairness and high throughput under HCF config-
urations, we propose throughput-driven fairness (TDF) schedul-
ing. TDF combines the opposing policies of fairness-driven and
throughput-driven scheduling in a manner transparent to the O/S
and end user, implemented at the hardware-level. The fairness-
driven component estimates each process’ throughput at the AMF
and avoids schedules that would reduce throughput below that
level. The throughput-driven component estimates each process’
throughput on high-frequency and low-frequency cores and op-
portunistically schedules to increase throughput. In effect, TDF
provides the appearance of a single uniform frequency to proces-
sors, near AMF frequency, and significantly boosts average perfor-
mance.

The main contributions of this paper are:

1. We evaluate the throughput of chips running all cores at
the min-max frequency compared to chips exploiting het-
erogeneous frequencies, and illustrate that using round-robin
scheduling achieves fairness and the appearance of uniform

performance across cores on a chip with heterogeneous fre-
quencies.

2. We propose a throughput-driven scheduling policy which in-
creases throughput up to 20% over round-robin scheduling and
a fairness-driven scheduling policy that approximates the fair-
ness of round-robin without relying on continuous brute-force
process migration.

3. We propose throughput-driven fairness (TDF) scheduling which
combines throughput and fairness considerations. TDF im-
proves the throughput of workloads that are sensitive to fre-
quency choices by 12% on average.

4. We demonstrate that TDF policy significantly increases the
number of premium chips that guarantee performance near
AMF-level instead of min-max-level: 90% of the chips ex-
ceed AMF-level total throughput while 98% of the chips
have minimum performance within 10% of the desired AMF
performance-level. In contrast, without our TDF policy, only
2% of chips exceed AMF-level throughput, and only 80% of
the chips have minimum performance within 10% of the AMF-
level.

The rest of this paper is organized as follows. In Section 2,
we discuss process variation and its impact on core frequencies,
impact of core-frequency variation on workload performance, and
motivate the need for hardware- or firmware-based process man-
agement. Section 3 discusses fairness-driven, throughput-driven,
and TDF scheduling policies. Section 4 describes our simulation
methodology, and Section 5 presents our results. We discuss related
work in Section 6 and conclude in Section 7.

2. Motivation: Impact and Handling of Process
Variation on CMPs

Process variations have always occurred in microprocessor manu-
facturing, but their impact and management has changed over time.
In this section, we discuss impact of process variations on multi-
core processors, effects on application performance, and the need
for an O/S and end-user transparent solution.

2.1 Process Variations
Process variations include both systematic and random inconsis-
tencies in the silicon and lead to variations in transistor size and
threshold voltages [24]. Ultimately, the impact is variation in tran-
sistor latency and power.

In the era of single-core microprocessors, process variations
were managed across die. While intra-die variations may have been
present, clocking components of a single microprocessor core at
different frequencies would have introduced synchronization logic
and complexity [25]. Instead, the core (and thus chip) were clocked
at the fastest speed the entire core could support. Manufacturers
used speed binning to market the faster microprocessors at a faster
clock speed and sell them at a higher price.

The introduction of chip multi-processors (CMPs) increases in-
terest in intra-die variations. If different cores in the chip support
different maximum frequencies, it is tempting to increase perfor-
mance by running the faster cores at higher clock speeds. Be-
cause the interconnects between cores (e.g., bus, on-chip-network,
or shared cache) tend to be asynchronous with the core clock, it
is not overly complicated to have different clock speeds for each
core. There may be little benefit to supporting multiple clocks in a
chip with few cores (e.g., two cores), but as core counts increase,
the inter-core variation and thus potential performance increase be-
comes larger. In fact, current multi-core production systems already

4

(a) (b)
Figure 2: (a) Contour map of variations in the 24-core CMP. (b) Floorplan of Atom-like core [8].

feature per-core frequency control [2]. Of course, actually utilizing
a chip with a wide variation in core clock frequencies is a challenge,
as it disrupts the appearance of uniform performance as discussed
in Section 1.

We illustrate the impact of process variations on a multi-core
chip with an example. We evaluate a chip with 24 Intel R© Atom TM

Processor-like cores that share 24 L2 banks. We model the process
variation in a 22 nm process using the VARIUS model [24]. A
representative chip is shown in Figure 2(a). The range from lightest
to darkest colors represents a transistor-latency change of about
40%. The core-block layout (based on [8]) and representative intra-
core process variation are shown in Figure 2(b). As can be seen in
the figure, there exists a wide distribution of core frequencies. Were
these single-core parts, they could be cut at the core boundaries
and each sold at a different frequency. But multi-core demands
either (a) the loss of performance potential by using the minimum-
maximum frequency among the cores (min-max) for all cores, or
(b) some other solution.

Over a large population of die, the impact of process variation
can be substantial. Figure 3a (top) shows the distribution of core
frequencies across a single representative 24-core chip as well as
the average of those frequencies. Figure 3a (bottom) shows the
frequency core distribution of a population of 100 24-core chips.
The top and bottom lines show the frequency of the slowest and
fastest core (i.e., the bottom line is the min-max frequency that
would conventionally be used for the entire chip). The middle line
shows the average frequency of all cores for each chip, which we
call the Apparent Mean Frequency (AMF). While the AMF is an
artificial construct (because it is impossible to clock the entire chip
at that frequency), the average frequency is useful to illustrate the
potential additional performance of the chip. AMF also is a useful
target for creating the appearance of a single performance level.

2.2 Process-Variation-Induced Performance Heterogeneity
Exposing inter-core process variations to the O/S or software re-
sults in a new challenge of non-uniform performance across the
cores. In this section, we present examples of how these varia-
tions manifest in applications. Figure 3b shows the performance

of two applications from SPEC 2006 [28], the high-instructions-
per-cycle (high IPC) application calculix, and the low-IPC applica-
tion libquantum on a 24-core CMP as portrayed earlier in Figure 2.
For this set of simulations, each core runs at its individual maxi-
mum frequency quantized to 100 MHz increments.

We show performance of these two applications on each core
normalized to their performance on the slowest frequency core
(the x axis shows core identifiers sorted by frequency). The per-
formance of the slowest core is equivalent to what the performance
of all cores would be if a single global min-max frequency were
used. HCF allows some cores to achieve more than 50% through-
put improvement for calculix. Average calculix throughput across
all cores (not shown in the figure) is 25% higher than that of
the slowest core. This average represents the throughput at the
AMF. The low-IPC libquantum experiences smaller variation, in-
dicating libquantum is not particularly sensitive to core frequency.
Such unpredictability of workload throughput on an individual core
presents a challenge for the hardware (and/or O/S) if we wish the
user to see a consistent level of performance.

2.3 Hardware-Based Scheduling to Provide the Appearance
of Single Frequency

We must address the inconsistent performance across cores while
still providing a level of throughput higher than that of min-
max. Previous scheduling policy proposals, which we discuss in
Section 6, target performance, power and aging improvements
in process-variation- or defect-induced heterogenous systems at
O/S-level or coarser intervals. In contrast, we seek O/S and end-
user transparent solutions to addressing performance inconsistency.
CPU vendors highly desire this goal for many reasons. First, pro-
cessor marketing strategies are based on a single performance num-
ber, and transparent scheduling policies simply allow for increased
performance without side-effects. Second, CPU vendors do not de-
sire to divulge low-level manufacturing information about process
variations. Third, conventional operating systems do not expect
a spectrum of core frequencies to be imposed by hardware. O/S
transparent solutions allow CPU vendors to boost performance
independent of O/S—by avoiding development delays or deploy-

5

Fr
eq

ue
nc

y
(M

H
z)

Chip id
10 20 30 40 50 60 70 80 90 100

0

1000

2000

3000

0 5 10 15 20 25
1000

1500

2000

2500
Fr

eq
ue

nc
y

(M
H

z)

Core id

Apparent Mean Freq (AMF)
Core−Freq

Max−core freq

AMF

Min−core freq

(a)

0 5 10 15 20

1

1.1

1.2

1.3

1.4

1.5

1.6

Core id (sorted by frequency)

R
el

at
iv

e
pe

rfo
rm

an
ce

Calculix
Libquantum

(b)

Figure 3: (a) Distribution of core frequencies on a single chip (shown in figure 2(a)) [top] and across 100 chips [bottom]. Apparent Mean Frequency (AMF) is
the average frequency of the chip. (b) Performance of two applications on 24 cores normalized to their performance on slowest core: calculix (compute-bound
application) is highly sensitive to the running core; libquantum (memory-bound application) exhibits smaller performance differences among cores.

ment inertia in system software. Finally, recent studies show that
program phase behavior exists at granularities finer than the O/S
scheduler ticks [13, 23]. Thus, O/S and end-user transparent be-
havior is important for both transparency reasons, and maximizing
throughput on HCF architectures. We employ hardware-/firmware-
based scheduling policies at granularities finer than the O/S sched-
uler tick to achieve our goal.

2.4 Beyond Multiple Frequency Domains
An extension of multiple frequency domains is to have multiple
voltage and frequency domains (VFS). Although fine-grained VFS
might allow voltage of slow cores to be increased enough to bring
their frequency closer to that of faster cores, such reduction in fre-
quency variance comes at the expense of chip complexity and in-
creased power and may not be feasible within a power budget.
Moreover, our scheduling policies to maintain fairness would ex-
tend to VFS configurations at a given power budget.

VFS or simpler per-core frequencies should not be confused
with Dynamic Voltage Frequency Scaling (DVFS), a runtime op-
tion to improve power-performance efficiency. In contrast to the op-
tion of DVFS, the physical characteristics of a chip impose process-
variation-induced fmax differences on the hardware and the O/S by
presenting a non-uniform chip.

3. Process Scheduling Policies for Heterogeneous
Core Frequencies

As discussed, HCF can restore the performance lost from min-
max, but can disrupt the appearance of uniform performance for all
cores, causing fairness problems in multi-process situations. In this
section, we discuss scheduling policies aimed towards improving
throughput, fairness and both. Before presenting scheduling poli-
cies, we recap the performance and fairness considerations of min-
max and static HCF configurations, using Figure 4 which illustrates
a conceptual 4-core processor that experiences process variations.
Figure 4(a) presents the performance of each core. Figure 4(b)
plots the average performance observed across all cores on the y
axis versus the minimum performance level (MPL)—performance
of the slowest process in the mix, relative to all processes running
on cores at the desired AMF performance level. Higher MPL indi-

cates performance of the slowest application is closer to the AMF
performance-level, and is better.

Min-Max frequency configuration. The (completely over-
lapped) circles corresponding to the first x-axis label in figure 4(a)
illustrate the performance of four copies of a process running on a
four core system. Clearly all four copies achieve the same perfor-
mance, as the underlying cores offer homogeneous performance.

Core disabling. An extension of min-max is to simply disable
slow cores and sell the chip with a higher single frequency but
fewer cores. Core disabling is not shown in the figure. Like min-
max, all remaining cores will achieve the same performance level,
but that level will depend on the aggressiveness of core disabling.
However, total throughput will be reduced because there are fewer
cores (further discussed in Section 5.1).

Static HCF. This configuration allows each core to operate at
its individual maximum frequency and statically assigns processes
to each core. The circles corresponding to the second x-axis label
in Figure 4(a) show that the four copies of processes, assigned to
four cores, now exhibit varying degrees of performance, depending
on the core they run on. Average performance approaches the
performance-level of virtual AMF (shown by the dashed line).
However, MPL (performance of slowest process) is the same as in
the min-max configuration because of the same lowest-frequency
core (Figure 4(b)).

Clearly, our goal must be not only to improve the average
performance, but also to improve MPL, as though all processes
were always running on a core near AMF performance-level. We
will examine scheduling policies aimed at this goal, introducing the
remaining x-axis labels of the figure at that time. First, we discuss
thread migration, which is central to our scheduling policies.

3.1 Thread Migration
In HCF configurations, thread migration provides a way to manage
the diverse collection of applications to boost throughput without
sacrificing significant performance of any single application. Our
scheduling policies employ thread migration to achieve throughput
and fairness goals.

Implementation. We envision thread migration-based schedul-
ing policies running in a embedded microcontroller. Current pro-
duction systems execute firmware code in embedded microcon-
trollers, to perform a variety of core performance, power-monitoring

6

M
in

-M
ax

St
at

ic
 H

CF

Ro
un

d-
ro

bi
n

Th
ro

ug
hp

ut
-

Dr
iv

en

Th
ro

ug
hp

ut
-

dr
iv

en
 F

ai
rn

es
s

Fa
irn

es
s-

dr
iv

en

Pe
rf

or
m

an
ce

Apparent
Mean Freq

Av
er

ag
e

Pe
rf

or
m

an
ce

(a) (b)

Minimum Performance Level
(Perf. of slowest thread)

High Average
but same
minimum

High Average
& high minimum

Figure 4: (a) Illustration of various mechanisms to boost throughput on a 4-core system experiencing variations. Performance at the (virtual) AMF frequency
is shown by the dashed line. (b) Tradeoff of average and Minimum Performance Level (MPL) for various mechanisms. The slowest application in the mix
determines MPL.

and control tasks [16]. The microcontroller has access to core per-
formance and status registers used to make scheduling decisions.

Transparency. As stated in Section 2.3, O/S and end-user
transparent scheduling is a highly desired goal for CPU vendors.
O/S-transparent solutions allow for processor marketing based on
a single (but higher) frequency, avoid system-software develop-
ment/deployment delays and mask low-level process variation-
related information from end users. Our goal of presenting cores
operating at a single AMF performance-level requires O/S to be-
lieve that applications are operating on the scheduled logical core.
To achieve O/S transparency, we rely on a programmable APIC
number that migrates with the thread, a small change suggested
in [22], in addition to on-die microcontroller implementation of
our scheduling policies.

Scheduling interval. O/S and end-user transparency, and thread
migration scheduling interval are intrinsically tied: the appearance
of a single frequency in a O/S quantum requires making schedul-
ing decisions at intervals that are significantly shorter than the
O/S scheduler ticks. All of our policies use relatively frequent,
hardware/firmware-based migration [22, 23], of processes to cores
to achieve improved throughput and fairness. However, choosing
too small a scheduler interval to migrate applications (such as
50,000 cycles), incurs high overheads, as the processes continu-
ously move register state and lose cache state with every migra-
tion (more details on the migration costs are presented in Sec-
tion 4.2). Furthermore, ensuring fairness at granularities finer than
O/S scheduler ticks is generally not required, except for some spe-
cial purpose real-time or embedded systems. We experimentally
studied the effect of thread migration interval on our architecture
(results not shown for brevity), and determined that cache over-
heads level off as migration intervals approach 500,000 cycles. Our
scheduling policies are evaluated with a 1 million cycle schedul-
ing interval, or tick, that is based off of a system clock. For the
remainder of the paper, scheduling tick refers to this 1-million cy-
cle hardware-based scheduling interval, not the O/S scheduling
interval, unless otherwise noted. It is important for fairness- or
throughput-oriented scheduling policies to not be computationally
complex, allowing for re-evaluation of processes to cores at the
finer time scales we target.

3.2 Fairness-Driven Policies
We model two fairness-driven policies discussed below.

3.2.1 Round-Robin Scheduling
A natural solution to achieving fairness in HCF implementations
is round-robin scheduling of processes across each core in the
chip. By running on every core in the chip, processes experience
performance-levels comparable to running on a system of homo-
geneous cores at the apparent-mean frequency (without accounting
for the migration costs). This policy is illustrated in Figure 4(a),
which shows all processes experiencing nearly the same perfor-
mance. In addition, MPL improves relative to min-max and static
(Figure 4(b)). We note that our implementation of round-robin
policy distributes evenly the time that a process spends execut-
ing under the available performance levels (frequencies), instead
of blindly and always migrating at each scheduling tick. A pro-
cess will never be migrated to a neighboring core operating at a
frequency that is equal to the current execution core.

3.2.2 Fairness-Driven Scheduling
The naively fairness-driven, round-robin policy explained above
suffers from two major drawbacks. First, it is incorrectly oblivious
to application performance requirements. Second, continuous pro-
cess migrations results in performance degradations—arising from
events such as cache misses, loss of core and other architected
register states—with every migration. An improved solution that
works around these drawbacks is prediction-based fairness-driven
policy that we simply refer to as fairness-driven: by predicting pro-
cess’ performance at the desired AMF frequency, and scheduling
to meet its AMF performance-level, brute-force reschedulings of
round-robin may be avoided, without compromising the uniform
performance-level.

Fairness driven policy works as follows. For the initial schedul-
ing ticks, this policy employs round-robin, and tracks instruction
rate in BIPS of processes by reading each core’s performance coun-
ters. After obtaining BIPS from cores at different frequencies, this
policy makes a prediction of process’ performance at the virtual
AMF core—the desired performance metric. In order to predict
performance at the virtual AMF, we experimented with a variety
of regression models, and found that a simple linear interpolation
model works well, yet provides a low-overhead implementation.
We call the predicted AMF performance-level for processes f-pred.
The scheduler rank orders f-pred values from all processes, and as-
signs the highest-frequency core to the process with the (measured

7

average) BIPS farthest below its f-pred value. The scheduler forces
processes that have not migrated for four consecutive scheduling
ticks, to migrate to a core at a different frequency. This is use-
ful to recompute f-pred to account for the program phase changes.
The fairness-driven policy cuts down on unnecessary migrations
to boost performance compared to round-robin (Figure 4(a)), yet
maintains round-robin-like MPL (Figure 4(b)). In practice, we ob-
serve slightly lower MPLs compared to round-robin due to predic-
tion inaccuracies (results in Section 5.3).

3.3 Throughput-Driven Scheduling
In HCF configurations featuring a mix of applications with di-
verse behaviors, overall system throughput can be increased by
identifying compute-bound program phases, and greedily execut-
ing the frequency sensitive phases on high-frequency cores. For
example, as we observed earlier in Figure 3b (Section 2.2), the
difference in compute requirements between calculix and libquan-
tum can be exploited to schedule the high-IPC application cal-
culix on to high-frequency core for increased system throughput. In
throughput-driven policy, the first step is to predict the performance
requirements of applications during each scheduling interval. Our
performance prediction technique relies on past performance his-
tory of the application to arrive at the predicted performance for
the next scheduling tick. We investigated a variety of prediction
mechanisms, and experimentally determined that last-value predic-
tor works best (consistent with previous findings [12]). The last-
value predictor uses the measured BIPS over the prediction period
of 100,000 cycles, which we experimentally determined to provide
the best prediction accuracy, for use as the predicted value for the
next scheduling tick. We call this predicted value t-pred. As the next
step, the scheduling policy rank orders processes based on their t-
pred value, and pairs them with cores rank-ordered by frequency.

As can be seen, this policy targets only maximum throughput,
taking full advantage of the range of available clock frequencies
in a chip (Figure 4(a)). However, this comes at the cost of lower
MPL (from starved applications), compared to fairness-based poli-
cies (Figure 4(b)). We note that more complex throughput oriented
policies have been studied for significantly more complex hetero-
geneous configurations, such as cores with structural defects, varia-
tions in static power or frequency [27,30,31]. These complex poli-
cies re-evaluate assignment of threads at O/S-level or coarser in-
tervals and do not target appearance of uniform performance level.
However, our scheduling policies target frequency-only chip het-
erogeneity, and need to be computationally simple and scalable, to
make scheduling decisions on finer intervals. As we show in Sec-
tion 5.3, this simple mechanism performed well for our studies.

3.4 Throughput-Driven Fairness Scheduling
The goal of our final policy, throughput-driven fairness scheduling
that we simply refer to as TDF, is to bring together throughput
and fairness benefits. That is, TDF seeks to squeeze performance
out of heterogeneous workload configurations on HCF hardware
configurations (Figure 4(a)), while providing the appearance of
single uniform minimum performance-level (Figure 4(b)) to the
user and the O/S.

TDF scheduling policy works as follows. For each process,
it reads in the process’ fairness-driven BIPS value, f-pred (Sec-
tion 3.2), and last-value predictor value, t-pred from throughput-
driven scheduling (Section 3.3). It then uses a weighted average of
these two BIPS values, to produce a figure for each process. Pro-
cesses with higher figures are assigned to faster cores. Throughput-
and fairness-policies can be weighted differently to favor one or

the other; for example, 100% throughput-weighted policy ends up
being the same as the throughput-driven policy while a 50%-50%
split weights the policies equally. We experimentally evaluate dif-
ferent weights as inputs to throughput and fairness algorithms (in
Section 5.2), and use the best combination of weights for final re-
sults.

4. Experimental Framework
Careful modeling of within-die process variations, and realistic per-
formance modeling of 24-core Atom-like system concurrently exe-
cuting processes at different frequencies are essential to completely
evaluate our proposed approaches. Our performance modeling in-
frastructure precisely models cost of draining core pipeline dur-
ing migrations, data-transfer across clock domains, Non-Uniform
Memory Access (NUMA) to the L2 cache shared across all cores,
MESI coherence protocol, and contentions to L2 arising from si-
multaneous core accesses. This section presents the overall experi-
mental framework and data gathering methodology.

4.1 Modeling Variations
Process variations are caused by fluctuations in device channel di-
mensions and dopant concentrations. Gate length variations (Leff)
can change the effective driving capability of the transistor, as well
as the threshold voltage, as a result of the short channel effect.
Random dopant variations can also change the threshold voltage
(Vth) of the device. These two parameters in turn affect the gate
delay and the leakage power. In this work, we capture the effect of
within-die variations using the VARIUS model [24] which gener-
ates different Vth and Leff values for each unit of the floorplan in
Figure 2(b). Systematic variation is characterized by a spatial cor-
relation, so that adjacent areas on a chip have roughly the same sys-
tematic component values. Random variation occurs at the level of
individual transistors. It is modeled analytically with a normal dis-
tribution with μ = 0 and standard deviation σran. Since the random
and systematic components are normally distributed and indepen-
dent, their effects are additive, and the total σ is

p
σ2

ran + σ2
sys.

Each individual experiment uses a batch of 100 chips that have dif-
ferent Vth (and Leff) maps generated with the same σ (standard
deviation), μ (mean), and φ (correlation range). Our parameters are
summarized in Table 5b. We assume that the random and system-
atic components have equal variances, similar to the model used
by [24]. Gate length has a correlation range close to half of the
chip’s width. Since the systematic component of Vth variation di-
rectly depends on the gate length variation, we assume φ = 0.5 for
Vth.

4.2 Performance Simulation
Results from the parameter variation modeling are used to set core
frequencies in the performance model. Core frequencies are quan-
tized in 100 MHz increments. Our performance model features 24-
core Atom-like microprocessor implemented in the detailed Asim
simulation framework [7]. The parameters of our simulated system
are shown in Table 5a. We also model an embedded microcontroller
that runs our scheduling polices (summarized in Table 5c), and ini-
tiates thread migrations. During the scheduling tick, the microcon-
troller picks processes to migrate, and the corresponding cores re-
ceive a quiesce signal; following that, cores halt fetch and complete
executing the instructions in the pipeline. Simulations precisely ac-
count for this pipeline drain cost that can range from hundreds to
thousands of cycles depending on pipeline activity. In addition, we
assume a 100-cycle overhead to migrate architectural register state
between cores, similar to previous work [22], under the direction

8

Number of cores 24

L1 D-cache Private, 24 KB, 8-way, line size is 64 bytes, latency 1 cycle

L1 I-cache Private, 32 KB, 8-way, line size is 64 bytes, latency 1 cycle

L2 cache Unified, shared, 1 MB, 16-way (per core), line size is 128 bytes

L2 latency 28 cycles if data found in local bank; varies for remote banks

Coherence MESI

TLB entries 16

Branch predictor 256-entry Branch Target Buffer

Instruction buffer 16 entries for each core

Pipeline width 2 (2 Integer, FP ALUs, 1 SIMD unit)

(a) Simulator parameters.

Tech: 22nm; Nominal frequency: 2.27GHz; Core Size: 1.56 x 3.9 mm2

Number of chips used in each experiment : 100
Vth: 300mV, at Vdd=0.8V, T=80C, φ: 1cm; α: 1.3
Vth’s σ/μ: 0.21 (σran/μ = σsys/μ = 0.15)
Leff ’s σ/μ: 0.105 (σran/μ = σsys/μ = 0.07)

(b) Process, Voltage and Temperature Parameters

Scheduling Policy Description
Min-Max Statically assign (no thread migration) processes

to cores in min-max frequency setting

Static Statically assign (no thread migration) processes
to cores in Heterogeneous Core Frequency (HCF) setting

(Section 3)

Round-robin Fairness by round-robining processes every scheduling tick
(Section 3.2.1)

Fairness-driven Prediction-based approach to achieving fairness
(Section 3.2.2)

Throughput-driven Assignment of processes to cores to increase throughput
(Section 3.3)

TDF Weighted combination of Fairness- & throughput-driven policies
(Section 3.4)

(c) Summary of scheduling policies

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

R
el

at
iv

e
B

IP
S

gc
c.

s0
4

na
m

d.
na

m
d

so
pl

ex
.re

f
so

pl
ex

.p
ds

−5
0

lib
qu

an
tu

m
.re

f
lb

m
.lb

m
gc

c.
cp

−d
ec

l
sp

hi
nx

3.
an

4
m

cf
.re

f
le

sl
ie

3d
w

rf.
rs

l
om

ne
tp

p
bw

av
es

.b
w

av
e

bz
ip

2.
lib

er
ty

gc
c.

c−
ty

pe
ck

bz
ip

2.
pr

og
ra

m
h2

64
re

f.m
ai

n
ze

us
m

p
xa

la
nc

bm
k.

re
f

ca
ct

us
A

D
M

bz
ip

2.
sr

c
bz

ip
2.

te
xt

pe
rl.

ch
ks

pa
m

bz
ip

2.
co

m
bi

ne
gc

c.
ex

pr
h2

64
re

f.s
ss

hm
m

er
.n

ph
3

gc
c.

16
6

h2
64

re
f.b

as
e

as
ta

r.B
ig

La
ke

gc
c.

20
0

gc
c.

ex
pr

2
po

vr
ay

.re
f

go
bm

k.
sc

or
e2

go
bm

k.
13

x1
3

go
bm

k.
nn

gs
go

bm
k.

tre
vo

rc
gc

c.
g2

3
go

bm
k.

tre
vo

rd
m

ilc
.s

u3
im

p
hm

m
er

.re
tro

ga
m

es
s.

h2
o+

sj
en

g.
re

f
ga

m
es

s.
cy

to
pe

rl.
di

ffm
ai

l
gc

c.
sc

ila
b

as
ta

r.r
iv

er
s

to
nt

o.
to

nt
o

ga
m

es
s.

tri
a

gr
om

ac
s

bz
ip

2.
ch

ic
ke

n
pe

rl.
sp

lit
m

ai
l

ca
lc

ul
ix

90%
80%
70%
60%
50%

Low Mod High

(d) Frequency sensitivity of SPEC CPU 2006 workloads

Figure 5: (a-c): Simulation, process-variation model parameters & scheduling policies. (d) Frequency-sensitivity based workload groupings, shown as low,
mod and high categories (discussed in Section 4.3), used in our evaluations.

of the microcontroller. We assume that the register state can be mi-
grated using the core C6 state array [1] or a similar small SRAM
of a few KB. Although other mechanisms have been suggested to
reduce the architectural state transfer penalty further [23], large in-
tervals between migrations in our policies make such optimizations
unnecessary. The simulator models data-transfer between clock
domains, and accounts for delays introduced by synchronization
buffers. L2 accesses that may be serviced by the cache bank local
to the core or by remote banks exhibit variable latencies, and are
accurately modeled. Following migrations, processes moving to a
new core rely on MESI coherence protocol to handle on-demand
transfer of data.

We use SPEC CPU 2006 applications for our evaluations [28].
We use 100-million instruction pinpoint regions for every applica-
tion [20], choosing the pinpoint with the highest weight in the over-
all application. All simulations are run for 15 ms after warming up
the caches prior to the pinpoint region. This simulation interval is
on the order of one O/S quantum, which is the granularity at which
we aim to present the appearance of fairness and uniform perfor-
mance.

4.3 Workload Groupings
We simulated SPEC CPU 2006 on various core frequencies to
determine each applications’ frequency sensitivity. Figure 5d plots
the performance of applications normalized to their performance at
100% frequency of 2.27 GHz. Workloads are shown on the x-axis
and BIPS relative to a maximum frequency on the y axis. From top
to bottom, the data series represent running the application at 90%,
80%, 70%, 60%, and 50% of the maximum frequency. Workloads
are sorted based on decreasing relative throughput at 50% of the

maximum frequency. For example, the workloads on the far right
perform poorly at low frequency and are thus highly sensitive.

Figure 5d also shows the division of workloads into three
groups, low, moderate (mod), and high frequency sensitivity. As
can be seen, the low category contains 12 lowest-sensitivity ap-
plications, and in our 24-core model, we run two copies of each
application. In the high category, we run 2-copies of 12 highest-
sensitivity applications. In addition, we examine combinations of
these three categories to form low-moderate, moderate-high, and
low-high workload categories picking 12 applications from each
category. We present results using all six categories in Section 5.

4.4 Measuring Performance
To understand the throughput and fairness aspects of various mech-
anisms, we present performance in two dimensions. First, the y-
axis in our results (Section 5) presents total throughput all pro-
cesses, each process’ throughput relative to its throughput at the
AMF. Let ti represent throughput of a thread i measured in billions
of instructions per second (BIPS), and tiamf represent the threads’
AMF throughput over the same measurement interval. For our con-
figurations involving 24 threads running on 24 cores, we obtain
throughput relative to AMF as shown by the expression below:

t1
t1amf

+ t2
t2amf

+ . . . + t23
t23amf

+ t24
t24amf

24

This value is a weighted speedup [26] with the weights being
AMF performance, and accounts for inherently low-IPC processes
as much as it does for high-IPC processes during our measurement
interval. Second, the x-axis in our results presents the minimum-
performance-level (MPL) - the throughput of the single worst pro-

9

0.6 0.7 0.8 0.9 1 1.1

0.5

0.6

0.7

0.8

0.9

1
Th

ro
ug

hp
ut

 re
la

tiv
e

to
 A

M
F

Minimum performance level relative to AMF

Min−Max
Slowest 25% of cores discarded
Cores less than AMF discarded

Desired
Target

(a) Disabling cores to achieve AMF performance-level.

0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1
0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

Th
ro

ug
hp

ut
 re

la
tiv

e
to

 A
M

F

Minimum performance level relative to AMF

Fairness−driven
TDF 30/70
TDF 50/50
TDF 70/30
Throughput−driven

(b) TDF analysis with different fairness & throughput weights.

Figure 6: (a) Cores can be disabled to improve minimum performance-level, but throughput suffers by doing so. (b) Performance of TDF with different
fairness and throughput weights as inputs. Throughput-driven (bottom legend) has no notion of fairness, and fairness-driven (top legend) has no notion of
throughput.

cess relative to that process’s AMF throughput, as shown by the
expression below:

minimum

„
t1

t1amf
,

t2

t2amf
, . . . ,

t23

t23amf
,

t24

t24amf

«

Note that poor MPL cannot be obscured by well-performing
high-throughput processes because MPL reflects only one thread.
Although weighted speedup metrics partially convey this type of
data in one dimension, our two-dimensional presentation is appro-
priate here because we are concerned about fairness for the individ-
ual process with the worst performance impact. A 1-dimensional
weighted-speedup could still conceal starvation of one or more pro-
cesses.

5. Results and Analysis
We discussed several policies in Section 3 aimed at squeezing per-
formance out of HCF configurations, yet maintain a uniform per-
formance level. In this section, we present experimental studies to
quantify the benefits of these policies across the variety of work-
load groupings discussed in Section 4.3. For all results, all schedul-
ing overheads—migration costs arising from pipeline drain, cache
losses, architected state transfer costs, performance losses aris-
ing from prediction inaccuracies for throughput, fairness and TDF
policies—are completely accounted for as discussed in Section 4.2.

As discussed in Section 3, it is viable to simply disable slow
cores in a chip to boost MPL. Core disabling is a straight-forward
extension to min-max, and we evaluate it first because of the sim-
plicity of this approach to boost MPL.

5.1 Core Disabling to Achieve AMF
Disabling cores to boost minimum performance-level is viable but
comes at the cost of reduced chip throughput. Figure 6a compares
chip throughput and MPL, for our collection of lowhigh workloads
discussed in 4.3 as a representative example. The x-axis shows
MPL, which is the throughput of the slowest process relative to its
throughput at the (artificial) AMF (Section 4.4). Higher MPL val-
ues brings the performance of slowest application closer to AMF,
and are better. The y-axis shows total throughput for all active cores

(desired target is annotated in the figure). The symbols each rep-
resent one chip out of a population of 100 for the configurations
shown in the legend.

As shown in the figure, discarding the slowest 25% of cores on
each chip helps significantly improve the MPL for the majority of
chips (x-axis value is higher). Further, as expected, discarding cores
that are below AMF guarantees AMF performance-level (or above)
for all chips by definition, since all cores slower than AMF are
discarded. However, discarding cores results in significant loss of
chip throughput. Many chips using discarding have total throughput
(y axis) that is lower than that for the vast majority of chips if min-
max were used. When all cores slower than AMF are discarded
(i.e., about half of the cores), total throughput is quite low. As a
result, we do not discuss core disabling further and do not include
it in our evaluations. As we will show next, our proposed policies
retain the throughput advantages of having all cores active while
boosting MPL close to the AMF performance-levels.

Before we examine our scheduling policies on a variety of
workload configurations, we analyze fairness and throughput trade-
offs of TDF using our collection of lowhigh workloads. This helps
us narrow the scope of the results to be presented later.

5.2 Throughput-Driven Fairness Analysis
In this section, we evaluate performance of TDF algorithm (de-
scribed in Section 3.4) using different weights as inputs for
throughput and fairness components, and understand trade-offs.
Figure 6b presents these results using our present collection of
lowhigh workloads; note that the axes scales are different from
Figure 6a. Each symbol represents a different configuration. The
TDF X/Y cases represent an X% weighting of throughput and a
Y% weighting of fairness that are both inputs to the algorithm. We
omit round-robin scheduling from this figure to avoid clutter.

At the extreme of fairness-driven, or TDF 0/100, (shown in the
inverted triangles at the bottom of the figure), targets only fairness
using predictions for each thread as discussed in Section 3.2.2. It
achieves high MPLs; for all but one chip the MPL is above 95%
of the AMF throughput. However, it has the following drawbacks:
a) even modest prediction-errors on high-sensitivity applications

10

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0.96

0.97

0.98

0.99

1

1.01

1.02

1.03

1.04

1.05
Th

ro
ug

hp
ut

 re
la

tiv
e

to
 A

M
F

Minimum performance level relative to AMF

Static
Round−robin
Fairness−driven
Throughput−driven
TDF30

(a) High-sensitivity workloads

0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1
0.96

0.97

0.98

0.99

1

1.01

1.02

1.03

Th
ro

ug
hp

ut
 re

la
tiv

e
to

 A
M

F

Minimum performance level relative to AMF

Static
Round−robin
Fairness−driven
Throughput−driven
TDF30

(b) Low-sensitivity workloads

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0.96

0.97

0.98

0.99

1

1.01

1.02

1.03

1.04

Th
ro

ug
hp

ut
 re

la
tiv

e
to

 A
M

F

Minimum performance level relative to AMF

Static
Round−robin
Fairness−driven
Throughput−driven
TDF30

(c) Moderate-sensitivity workloads

0.75 0.8 0.85 0.9 0.95 1
0.95

0.96

0.97

0.98

0.99

1

1.01

1.02

1.03

1.04

1.05

Th
ro

ug
hp

ut
 re

la
tiv

e
to

 A
M

F

Minimum performance level relative to AMF

Static
Round−robin
Fairness−driven
Throughput−driven
TDF30

(d) Mix of Low- & Moderate-Sensitivity workloads

Figure 7: Performance of different approaches on workload groupings discussed in Section 4.3 (Figure 5d). Note that the x- and y- axes scales vary in order
to provide reasonable presentations of the data.

result in lower system MPL for those chips; and b) it does not
exploit high- and low-workload mix to boost throughput.

Reducing the fairness weight to 70% in the algorithm, shown
in TDF 30/70 scenario, allows the high-sensitivity applications to
seek cores to improve throughput. This effect can be seen by com-
paring the throughput values that are higher for TDF 30/70. Further,
chips with low MPLs stemming from prediction-errors do better.
We continue to see throughput improvements in 50%-50% case,
while preserving MPL. At 70% throughout weight, shown by TDF
70/30 scenario, throughput-driven mechanism works aggressively
to achieve throughput at the expense of increasing the MPL spread.
At the extreme of purely throughput-driven, TDF 100/0, we see
widely scattered MPLs, including one at only 93% of the AMF
throughput.

Because TDF 70/30 achieves high throughput while maintain-
ing high MPL—all chips are above 96% of the AMF throughput—
our remaining analysis uses this configuration. We observed TDF
70/30 to perform well for the other workload groupings. For the
remainder of the paper, we call TDF 70/30 simply TDF30.

5.3 Workload Mix Analysis
In this section, we present results of our scheduling policies us-
ing frequency-sensitivity based workload groupings discussed in
Section 4.3. The basic format of the figures in this section are the
same as before (discussed in Section 4.4): the x-axis shows MPL—
performance of the slowest application relative to its performance
at the (artificial) AMF. Higher MPL values brings the performance
of slowest application closer to AMF, and are better. The y-axis
shows total throughput for all active cores. Each symbol represents
one chip out of a population of 100 for the configurations shown
in the legend (scheduling policies summarized in Table 5c). We
expect to see the best throughput improvements on heterogeneous
workloads that have a mix of sensitivities because the scheduling
policy can exploit the variety to increase throughput.

High-sensitivity workloads. High-sensitivity workloads, which
typically tend to be compute-bound, have strong preferences for
high-frequency cores. As a result, static scheduling exhibits ex-
tremely poor MPL, the lowest of all workload categories we evalu-
ated (Figure 7a). Round-robin allows all processes to utilize high-
frequency cores for a fraction of time and significantly improves
MPLs. However, overall throughput for round-robin is low. Ad-
ditional swap overheads incurred by round-robin are avoided by

11

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0.96

0.98

1

1.02

1.04

1.06

1.08

1.1
Th

ro
ug

hp
ut

 re
la

tiv
e

to
 A

M
F

Minimum performance level relative to AMF

Static
Round−robin
Fairness−driven
Throughput−driven
TDF30

(a) Mix of Moderate- & High-Sensitivity workloads

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0.9

0.95

1

1.05

1.1

1.15

Th
ro

ug
hp

ut
 re

la
tiv

e
to

 A
M

F

Minimum performance level relative to AMF

Static
Round−robin
Fairness−driven
Throughput−driven
TDF30

(b) Mix of Low- & High-Sensitivity workloads

Figure 8: Performance of different approaches on workload groupings discussed in Section 4.3 (Figure 5d). Note that the x- and y- axes scales vary in order
to provide reasonable presentations of the data.

fairness-driven while still maintaining a tight distribution of chip
MPLs. Throughput-driven approach, which aggressively sched-
ules processes predicted to provide high-performance during the
scheduling tick, squeezes additional performance out of these
workloads. By doing so, other applications in the mix suffer and
MPLs shifts unfavorably down. TDF30, by giving some weight
to fairness considerations, avoids this scheduling imbalance and
recovers MPL.

Low-sensitivity workloads. Figure 7b presents results for a
collection of low-sensitivity workloads for the various configura-
tions shown in the legend. Low-sensitivity workloads, which are
often memory-bound, are more tolerant to core frequency differ-
ences. As a result, this collection of workloads offers the best-case
scenario for static HCF scheduling. As can be seen, barring a few
chips, the majority of chips can provide a high MPL for static.
Round-robin scheduling, by allowing all workloads to spend equal
amount of time on all cores, removes the outliers found in static
scheduling, and tightens the spread of MPL for all chips. Fairness-
driven, throughput-driven and TDF30, have little differences in
their MPL distributions. Also, in this scenario, throughput benefits
are minimal for all scheduling policies, simply because the applica-
tions do not have core preferences. While the low-sensitivity work-
loads are not particularly interesting, all of our scheduling policies
perform as well or better than the reference static and round-robin
policies in spite of the overheads introduced by our policies.

Moderate-sensitivity workloads. This set features workloads
with moderate frequency sensitivity and varying execution behav-
ior. Throughput-driven exploits execution variations, and schedules
processes to improve throughput (Figure 7c), at the cost of reducing
MPLs. Even so, by exploiting intra-process phase changes, MPL is
significantly improved compared to static configuration. TDF nar-
rows the MPL spread for this set of workload preserving throughput
benefits. Using TDF policy, all chips achieve at least 90% of AMF
performance-level, providing clear benefits compared to static HCF
scheduling.

Low- & Mod-sensitivity workload combination. Differences
in workload demands for this set results in advantages to throughput-
driven policy compared to the earlier category of only moderate-
sensitivity workloads (Figure 7d). Although throughput-driven
continues to cater to applications with need for high-frequency

cores, presence of other low-sensitivity applications, which are
mostly core agnostic, results in no significant MPL reduction com-
pared to the other fairness-based policies. It is consistent with our
expectations that availability of workloads at different performance
levels in general helps TDF, as is also seen in the mix categories
below, which can manage applications to cater to both throughput
and fairness.

Mod- & High-sensitivity workload combination. This set
of workloads (Figure 8a) combine the effect of moderate and
high-sensitivity categories discussed above. Similar to the high-
sensitivity category, static significantly suffers from throughput and
fairness losses amidst a collection of applications of which many
benefit from high-frequency choices. Further, aggressive schedul-
ing of throughput-driven affects its MPL, a trend we saw in high-
sensitivity category above. TDF significantly tightens the spread of
MPL in this category, yet the throughput is within 1% of the purely
throughput-based implementation.

Low- & High-sensitivity workload combination. Our final
set of workloads (Figure 8b) features both compute-bound and
memory-bound applications, offering the best case scenario for our
policies. Aggressive throughput-driven scheduling squeezes perfor-
mance from high-sensitivity workloads, without affecting MPL in
the comfort of other frequency-agnostic workload choices. TDF
performs well by removing the few outlier chips and preserves
MPL similar to fairness-driven approaches. Overall, we obtain 20%
performance benefits from TDF compared to naive round-robin,
while maintaining the same MPL.

5.3.1 Workload Mix Analysis Wrap-up
We observe that TDF policy balances throughput and fairness well
across a wide variety of applications. The collection of workloads
we examined earlier, a mix of low-sensitivity applications, provides
the best-case scenario for static configurations and a limited oppor-
tunity for throughput or fairness policies. We showed that, even ac-
counting for all costs, proposed scheduling perform as well or bet-
ter than static throughput and MPL for this category. Other work-
load categories provide significantly more average performance
and MPL. Across all workloads, TDF30 achieves a minimum per-
formance level at or better than 90% of the AMF throughput (with a
few exceptions just below 90 in Figure 8a). The final set of low- and

12

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15
Th

ro
ug

hp
ut

 re
la

tiv
e

to
 A

M
F

Minimum performance level relative to AMF

Min−Max
Static
TDF30

(a) Comparison of Min-Max, Static HCF & TDF

0

20

40

60

80

100

%
 o

f C
hi

ps Throughput Relative to AMF

Min−Max Static TDF
0

20

40

60

80

100

%
 o

f C
hi

ps Minimum Performance Relative to AMF

<0.8 <0.9 <0.95 <1 <1.05 >1.05

(b) Percentage of chips at various throughput & MPL relative to AMF

Figure 9: Summary of benefits: (a) Static HCF recovers throughput lost in Min-Max but suffers from low MPL. TDF exhibits highest MPL and throughput.
(b) TDF scheduling enables 90% of the chips to exceed AMF throughput (top), and over 98% of the chips have MPL within 10% of the desired AMF level
(bottom).

high-sensitivity workloads illustrate the benefits of TDF, by boost-
ing performance up to 20% over a pure fairness-driven, round-robin
solution while maintaining high MPL.

5.4 Summary of Benefits
Figures 9a brings together Min-Max, Static HCF and TDF ap-
proaches. For these studies, we return to our mix of lowhigh sensi-
tivity applications. As shown in the plot, most chips using Min-Max
have significantly lower throughput than the potential AMF perfor-
mance level. Further, MPL with respect to the AMF performance-
level is significantly lower because one or a few slow cores limit
the frequency of the entire chip. We observe that Static HCF re-
covers throughput lost in Min-Max. However, Static suffers from
low MPL as was shown in the previous section, largely due to the
assignment of some frequency-sensitive applications to slow cores.
TDF, which caters to the needs of frequency sensitive applications
while ensuring a level of minimum performance for all applica-
tions, exhibits the highest MPL and the highest overall throughput.

Finally, Figure 9b summarizes the speed bin distributions of
chips for min-max, static, and TDF. The top graph shows the
throughput relative to the AMF across the chip populations (equiv-
alent to y axis on previous graph), while the bottom graph shows
the MPL relative to the AMF (equivalent to x axis on previous
graph). From Figure 9b(top), we observe that static HCF enables
80% of the chips to provide within 10% of the AMF-level through-
put, and 2% to exceed AMF-level throughput. In contrast, TDF en-
ables 90% of the chips to exceed AMF-level throughput. The MPL
plot shows that, using TDF, over 98% of the chips can guarantee
their minimum performance to be within 10% of the desired AMF
performance-level (a small sliver representing one slow chip is not
visible due to the scale). This represents a significant increase in
high frequency premium chips compared to static HCF: only 9%
of the chips can guarantee that MPL. This trend is also true for
other workload categories as discussed at the end of the last sec-
tion. Note that while the naive round-robin policy is not shown on
these graphs, that policy would result in both total and minimum
throughput very near the AMF, negating the throughput benefits of
TDF. TDF provides a strong balance of high total throughput and
consistent performance across the population of chips.

6. Related Work
Our contributions are related to research in the areas of process
variations, heterogeneous- and variation-aware scheduling, and
thread migration.

Process variations. Nikolic et al. provide a good overview of
process variations [18]. Pang et al. built a test chip in 90 nm pro-
cess to characterize lithography induced variations [19]. Their re-
sults show that variations are normally distributed. Bowman et al.
present a FMAX model derived from D2D and WID statistical pro-
cess models, and verify it using wafer sort data for 250nm micro-
processor [5]. Using the FMAX distribution model, they show that
the WID variation directly impacts FMAX mean and the D2D vari-
ation affects FMAX variance. Humenay et al. [11] estimate core
frequencies in their work, and suggest adaptive body bias and sup-
ply voltage to reduce variations. Instead, we exploit variations to
boost performance.

Scheduling techniques (Variation-aware, heterogeneous, &
SMT). Throughput-driven fairness evaluation in this paper is re-
lated to numerous other work on thread-scheduling in SMT, het-
erogeneous, and variation-aware architectures. In the context of
SMT processors, Luo et al. present thread starvation techniques
while boosting overall system throughput [15]. Mutlu et al. pro-
pose fairness mechanisms for multiple applications sharing DRAM
memory system [17]. Tiwari et al. study aging-driven scheduling to
slow down aging of chips or to boost frequency [29]. Winter et al.
evaluate O/S-level scheduling policies for unpredictably heteroge-
neous multi-cores affected by various manufacturing and wear-out
defects [30]. Their more recent work [31] expands the performance
and power analysis to heterogeneous many-core systems. In con-
trast, our policies implemented at fine temporal windows seek ap-
pearance of a single, uniform-level of performance to processes in
an O/S transparent manner.

Teodorescu et al. [27] propose application scheduling and
power management policies to improve performance and energy-
efficiency. Although their scheduling policies use the same gen-
eral intuition— applications that are memory-bound benefit less
from being scheduled on high-frequency cores—they do not treat
software-process fairness as a first-order consideration, and their
evaluations are focused on improving throughput and ED2 with-

13

out considering if assignments are unfair to different processes. On
systems featuring per-core DVFS, Isci et al. [13] propose using a
global power manager to re-evaluate core power levels every 500
μs using run-time application behavior. Herbert et al. [10] study
frequency and power heterogeneity from process variations and
evaluate DVFS algorithms. Kumar et al. [14] propose using single-
ISA, heterogeneous CMPs varying in resources and complexity to
efficiently accommodate diverse set of applications. In comparison
to these efforts, the goal of this work is to maximize performance
yet provide the appearance of a single performance-level to running
processes.

Thread migration. Heo et al. [9] propose core hopping to com-
bat thermal problems, and argue that the interval between core mi-
grations can be smaller than typical O/S context swap times for
maximum benefit. We argue the same for performance and to pro-
vide a uniform performance level to O/S. Powell et al. [21] propose
using thread migration to prevent local hot spots that can cause
chip failure. Recently, Powell et al. [22] propose migration to move
threads away from defective cores. They assume similar architected
state transfer costs. Rangan et al. [23] propose thread motion, a fine-
grained implementation of thread migration. However, their evalu-
ations are limited to cores that share first-level caches.

7. Conclusion
Ignoring inter-core frequency variations, and setting chip frequency
to be that of the slowest core sacrifices substantial performance
to achieve simplicity. Alternatively, per-core frequency configura-
tions result in the loss of uniform performance-level to O/S and
end-users, and poses scheduling challenges. Our scheduling poli-
cies restore the appearance of single, uniform performance-level
to the users and the O/S while allowing for individual cores to be
clocked at frequencies higher than that allowed by the slowest core.
Detailed analysis show that our scheduling policies guarantee min-
imum application performance near that of the mean frequency of
the chip, in lieu of its minimum frequency, by masking process-
variation induced heterogeneity. Our throughput-driven fairness
policy brings together fairness and throughput considerations, and
improves throughput by an average of 12% compared to round-
robin for frequency-sensitive applications. TDF policy allows 90%
of chips to have total throughput above the throughput expected
at the average frequency. At the same time, TDF allows 98% of
chips to maintain minimum performance at or above 90% of that
expected at the mean frequency, providing a single uniform perfor-
mance level to present for the chip.

Acknowledgments
Special thanks to Meeta Gupta for help with various aspects of
this work. We are also thankful to Carl Beckmann, Arijit Biswas,
Nitin Borkar, Saurabh Dighe, Joel Emer, Brian Greskamp, William
Hasenplaugh, Glenn Holloway, Aamer Jaleel, Kris Konigsfeld,
Athanasios Papathanasiou, Harish Patil, Steve Raasch, Paul Racu-
nas and VJ Reddi for their comments and suggestions. We are
also grateful to the anonymous reviewers for their feedback. This
work is partially supported by National Science Foundation grants
CCF-0048313, CSR-0720566 and CCF-0702344. Any opinions,
findings, conclusions, or recommendations expressed in this mate-
rial are those of the authors and do not necessarily reflect the views
of the NSF.

References
[1] Intel Core 2 Duo Processor and Intel Core 2 Extreme Processor on

45-nm Process for Platforms Based on Mobile Intel 965 Express
Chipset Family Datasheet. http://www.intel.com/design/mobile/
datashts/316745.htm.

[2] Intel Core i7-900 Desktop Processor Extreme Edition Series on 32-
nm Process: Datasheet, Volume 1. http://download.intel.com/design/
processor/datashts/323252.pdf.

[3] Intel Turbo Boost Technology. http://www.intel.com/technology/
turboboost/index.htm.

[4] Intel’s Tick-Tock Model. http://www.intel.com/technology/tick-
tock/index.htm.

[5] K. A. Bowman and S. G. Duvall. Impact of Die-to-Die and Within-
Die Parameter Fluctuations on the Maximum Clock Frequency
Distribution for Gigascale Integration. IEEE JSSC, 2002.

[6] S. Dighe, S. Vangal, et al. Within-Die Variation-Aware Dynamic-
Voltage-Frequency Scaling Core Mapping and Thread Hopping for an
80-Core Processor. In ISSCC, 2010.

[7] J. Emer et al. Asim: A Performance Model Framework. In IEEE
Computer, pages 68–76, 2002.

[8] G. Gerosa et al. A Sub-2 W Low Power IA Processor for Mobile
Internet Devices in 45 nm High-k Metal Gate CMOS. IEEE JSSC,
2009.

[9] S. Heo, K. Barr, and K. Asanovic. Reducing Power Density through
Activity Migration. In ISLPED, 2003.

[10] S. Herbert and D. Marculescu. Variation-Aware Dynamic Volt-
age/Frequency Scaling. In HPCA, 2009.

[11] E. Humenay et al. Impact of Process Variations on Multicore
Performance Symmetry. In DATE, 2007.

[12] C. Isci et al. Long-Term Workload Phases: Duration Predictions and
Applications to DVFS. MICRO, 2005.

[13] C. Isci et al. An analysis of Efficient Multi-Core Global Power
Management Policies: Maximizing Performance for a Given Power
Budget. In MICRO, 2006.

[14] R. Kumar et al. Single-ISA Heterogeneous Multi-Core Architectures
for Multithreaded Workload Performance. In ISCA, 2004.

[15] K. Luo et al. Balancing Thoughput and Fairness in SMT Processors.
In ISPASS, 2001.

[16] R. McGowen et al. Power and Temperature Control on a 90-nm
Itanium Family Processor. IEEE JSSC, Jan. 2006.

[17] O. Mutlu and T. Moscibroda. Stall-Time Fair Memory Access
Scheduling for Chip Multiprocessors. In MICRO, 2007.

[18] B. Nikolic and L. Pang. Measurements and Analysis of Process
Variability in 90nm CMOS. In International Conf on Solid-State and
Integrated Circuit Technology, 2006.

[19] L. Pang and B. Nikolic. Impact of Layout on 90nm CMOS Process
Parameter Fluctuations. In Symposium on VLSI Circuits, 2006.

[20] H. Patil et al. Pinpointing Representative Portions of Large Intel
Itanium Programs with Dynamic Instrumentation. In MICRO, 2004.

[21] M. Powell et al. Heat-and-run: Leveraging SMT and CMP to Manage
Power Density Through the Operating System. In ASPLOS, 2004.

[22] M. Powell et al. Architectural Core Salvaging in a Multi-Core
Processor for Hard-Error Tolerance. In ISCA, 2009.

[23] K. Rangan et al. Thread Motion: Fine-Grained Power Management
for Multi-Core Systems. In ISCA, 2009.

[24] S. Sarangi et al. VARIUS: A Model of Process Variation and
Resulting Timing Errors for Microarchitects. IEEE Transactions
on Semiconductor Manufacturing, 2008.

[25] G. Semerano et al. Energy-Efficient Processor Design Using Multiple
Clock Domains with Dynamic Voltage and Frequency Scaling. In
High Performance Computer Architecture, 2002.

[26] A. Snavely and D. Tullsen. Symbiotic Jobscheduling for a Simultane-
ous Multithreading Processor. In ASPLOS, 2000.

[27] R. Teodorescu and J. Torrellas. Variation-Aware Application
Scheduling and Power Management for Chip Multiprocessors. In
ISCA, 2008.

[28] The Standard Performance Evaluation Corporation. Spec CPU2006
suite. http://www.specbench.org/osg/cpu2006/.

[29] A. Tiwari and J. Torrellas. Facelift: Hiding and Slowing Down Aging
in Multicores. In MICRO, 2008.

[30] J. A. Winter and D. H. Albonesi. Scheduling Algorithms for
Unpredictably Heterogeneous CMP Architectures. In Dependable
Systems & Networks, 2008.

[31] J. A. Winter et al. Scalable Thread Scheduling and Global Power
Management for Heterogeneous Many-Core Architectures. In PACT,
2010.

14

