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Abstract set-associative cache implementations probe the tag and
data arrays in parallel, and then select the data from the
matching way, which is determined by the tag array. At the
ime of precharging and reading the tag and data arrays, the
atching way is not known. Consequently, conventional

Set-associative caches achieve low miss rates for typical
applications but result in significant energy dissipation.
Set-associative caches minimize access time by probing al

the data ways in parallellwith the_tag lookup, although the arallel accessaches precharge and reaitithe ways but
output of only the maiching way is used. The energy SpemF!s)electonly oneof the ways on a cache hit, resulting in

accessing the other ways is wasted. Eliminating the WaSteqNasted dynamic energy dissipation. For example, a four-
energy by performing the data lookup sequentially follow- way set-associative cache discards.three of the f(,)ur ways
ing the tag lookup substantially increases cache access, every access, wasting nearly 75% of the energy dissi-
time, and is unacceptable for high-performance L1 CaChes'pated. '

In this paper, we apply two previously-proposed techniques, There are various options for reducing cache dynamic
way-prediction and selective direct-mapping, to reducing energy with different performance impact. The key to

L1 cache dynamic energy while maintaining high perfor- R oo : :
; . . energy reduction is to pinpoint the matching way without
mance. The techniques predict the matching way and probeprobing all of the Waysr.) OF:1e option to avoig hig)lfl energy

only the predicted way and not all the ways, achieving dissipation at the cost of slower access is by usieguen-

energy savings. While these techniques were originally Pro- access employed in the Alpha 21164's L2 cache [11].

posgd to improve set-associative cac_he access times, this i sequential access, the cache waits until the tag array

the first paper to apply the”." to reducing cache ENergy.  determines the matching way, atften accesses only the
dWe_ evilija(;[e thﬁ eflfjct}veniss of dthese t”echnlques ”?natching way of the data array, dissipating about 75% less

reducing -cache, I-cache, and overall processor energy than a parallel access cache. Sequential access,

eze:gy. dU;smg ]Ehese tec;hr;lques, ourhﬁacheg ?qh|_eve trt1h owever, serializes the tag and data arrays, adding as much
energy-delay ot sequential access while maintaining e, gao4 15 the cache access time [18]. The impact on the

performance of parallel access. Relat|v_e to parallel access access time precludes sequential access for L1 caches.

L1 i- and d-caches, the technigues achieve overall proces- In this paper, we apply two previously-proposed tech-
- I 0, i - - !

Sor energy delay reduction of 8%, wh|l_e perfe(;t way prs nigues,way-prediction[10,4] andselective direct-mapping

d'Ct'On. with no performance degradgﬂon achieves .10/0 [4], to reduce L1 dynamic cache energy while maintaining

reduction. The performance degradation of the technlqueshigh performance. Way-prediction and selective direct-

is less than 3%, compared to an aggressive, 1-cycle, 4'\N""y*rnapping predict the matching way number and provide the
parallel access cache. predictionprior to the cache access, instead of waiting on

the tag array to provide the way number as done by sequen-
tial access. Predicting the matching way enables the tech-
nigues not only to attain fast access times but also to

energy due to charging and discharging of highly-capaci- achieve energy redugtion. The 'techniques reduge energy
tive bit lines and sense amps. As a result, caches accounpecauseonly the predicted way is accessed. While these
for a significant fraction of the overall chip dynamic techniques were originally proposed to improve set-asso-
energy. For instance, Pentium Pro consumes about 33% ofiative cache access times, this is the first paper to apply
chip power in instruction fetch and d-cache together [16], them to reducing energy. o ,
and Alpha 21264 consumes about 16% in caches [12]. The choices for d-cache way-prediction are to use infor-
To achieve low miss rates for typical applications, mod- mation available either early in the plp'elln'e, such as the
ern microprocessors employ set-associative caches. FasProgram counter (PC), or later in the pipeline, such as an

1 Introduction

High-performance caches dissipate significant dynamic



XOR-based approximation of the load address [3]. Unfor- Timing order: dsep (T
tunately, both choices have problems. Way-prediction . . .= arallel access . SequentiJaEce;sJ

based on information from early pipeline stages suffers fag array Jata anay fag anay T Ay
from poor accuracy, and way-prediction based on late pipe-
line information introduces way-prediction table lookup
delay in the cache access critical path [4]. For instance, the
way-prediction scheme used in [13] inserts a table lookup ¥
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after the address generation to identify the predicted way. \ gjeqt way / —
Therefore, way-prediction is not nearly as effective for d- -
caches as it is for i-caches. —

Fortunately, a majority (70% - 80%) of L1 d-cache data day
accesses can avoid way-prediction altogether by using . way-prediction d: Selective direct-mapping
selective direct-mapping [4], and achieve low energy dissi- tag array data array tag anay data array
pation without performance loss. These accesses are the| & gl o7 [a B gl =
non-conflicting accesses (i.e., they do not map to the same || § - § 8 B |8
set as another access) which can use direct mapping |L= > :§ : g = > :§ : 3
instead of set-associative mapping. In direct mapping, an v v o ,: v = ‘|3> I’
address explicitly maps to only one of the N ways of a set- hit? | w v hit? |~y v
associative cache as if it were a direct-mapped cache; the Predicted way # _ - -
address (and not the tag array) directly determines the v g{g’c'tc‘r;‘;‘;‘pfn"g“wggﬁg v

matching way. Consequently, selective direct-mapping data data
avoids the energy wastage of reading the other ways, with- FIGURE 1: Access and timing for design options.
out the need for way-prediction for the majority, i.e., non- .
conflicting, accesses. The rest of the accesses can be either
way-predicted based on early available information with

reasonable accuracy, or sequentially accessed with little
performance loss.

I-cache way prediction can be integrated with branch
prediction to achieve both high accuracy [9] and timeli-
ness. Consequently, i-cache way-prediction achieves sub
stantial energy reduction and obviates the need for
selective direct-mapping for i-caches. The original pro-
posal [9] way-predicts only taken branches, and we extend
it to all instruction fetches, including not-taken branches,
sequential fetches (i.e., non-branches), and function .
returns. These extensions allow us to achieve energy sav-2 Reducing cache access energy
ings on nearly all i-cache accesses. In this section, we discuss design considerations and the

The main results of this paper are: tradeoffs between energy and performance for the design
* Our techniques allow us to approach the performanceoptions discussed in Section 1. Because the tag array is

of parallel access, set-associative caches with energymuch smaller than the data array, energy disspiation in the

dissipation close to that of sequential access. data array is much larger than in the tag array. Therefore,
* Combining selective direct-mapping for d-caches and we apply the energy optimizations considered in this paper
way-prediction for i-caches achieves an overall proces- only to the data array, and not the tag array.

sor energy-delay reduction of 8%, compared to a 10%

reduction assuming perfect way-prediction and no per- 2.1 Design options: performance and energy

formance degradation. The performance degradation of

the techniques is less than 3%, compared to an aggres- Figure 1 shows the timing order of the actions involved
sive, 1-cycle, 4-way, parallel access cache. in an access under each of the design options. Figure 1(a)

e Selective direct-manping supolemented with wav-ore- depicts the relevant components and timing of a conven-
ppIng Supp y-p tional, parallel access read. By reading the N data ways in

diction achieves an average d-cache energy delay . - .
. parallel with the tag array, the set-associative design allows

reduction of 69% over a 4-way parallel access L1 d- . . .
the data and select signal for the data-selection multiplexor

cache. to arrive at nearly the same time. The energy dissipated

Way-predicting i-cache accesses achieves an L1 i-cache
energy delay reduction of 64% over a 4-way parallel
access i-cache.

The rest of the paper is organized as follows. Section 2
describes how to reduce energy for cache accesses.
Section 2.2 presents the selective direct-mapping frame-
work for d-caches. Section 2.3 describes the way-predic-
tion framework for i-caches. In Section 3 we describe the
experimental methodology, and we present results in
Section 4. Section 5 presents related work, and finally, we
conclude in Section 6.



equalgag array energy+ N * (1 data way energy)and the to only one of the N ways, as if it were a direct-mapped
access time equainax (tag array time, data array time) + cache. The address (and not the tag array) directly deter-
data mux timeé mines the matching way obviating the need for way-pre-

The above and the following energy and timing expres- diction. The isolation is achieved by predicting that an
sions are first-order approximations, but sufficient for our access is non-conflicting and we describe the details in
discussions. We include precharge in the energy expresSection 2.2.2. While way-prediction probes the predicted
sions but do not include precharge in the timing expres- way, selective-DM predicts that an access is non-conflict-
sions, because precharge time is not a part of access timeng and probes its direct-mapping way. The direct-mapping
[18], and no techniques we use impact precharge timing inway is identified by the address’s index bits extended with
any way. log,N bits borrowed from the tag.

The simplest solution to pre-determining which data  Selective-DM access, depicted in Figure 1(d), proceeds
way should be accessed is to wait for the output of the tagsimilar to a way-predicted access. A correctly predicted
array, as done in sequential access and depicted imaccess probes only the matching data way, and a mispre-
Figure 1(b). Sequential access deterministically yields thediction initiates a second probe of the correct data way.
matching way number without resorting to prediction. Sac- Because most accesses are non-conflicting and are cap-
rificing performance by waiting to access only the correct tured by selective-DM, a high energy or low performance
way allows the design to achieve low energy on all solution, such as parallel or serial access respectively, may
accesses. The energy dissipated eqizgsarray energy + be acceptable for conflicting accesses. For designs where
(1 data way energy)and the access time equédg array conflicting accesses also need to be low energy and high
time + data array time + data mux timeéCompared to a  performance, way-prediction can be employed. In our
parallel access cache, the sequential access dissipates lesxperiments, we evaluate several such combinations.

energy of the amoun(iN-1) * (1 data way energy)but is It is apparent from Figure 1(c) and Figure 1(d) that the
slower bymin (tag array time, data array timeYypically, energy and timing are similar for way-prediction and selec-
the access speed difference between sequential and parallélve-DM. For a correctly predicted access in either scheme,
access is about 60%. the energy dissipated equdky array energy + (1 data

An alternative design that only accesses the one way onway energy,) and the access time equafgex (tag array
most access is to employ way-prediction as depicted intime, data array time) + data mux tim&or a mispredicted
Figure 1(c). We describe details of how the prediction is access, the second probe increases the enerdy bgta
made in Section 2.2.1, but focus on the access timing andway energy)and extends the access time dgta array
energy aspects here. Upon an access, the tag array and thiane. With either scheme, mispredictions incur a latency
predicted data way are probed simultaneously. On a hit, thepenalty because they require two data array probes. But
tag array determines that either the predicted data waybecause only two data ways are accessed (the mispredicted
holds the data and flags a correct way-prediction or anotherway and the correct way) in all, the total energy of a
data way holds the data and flags a misprediction. On amisprediction is not as high as that of a parallel access
misprediction, the data array is accessed again, probing thevhen set-associativity is greater than two.
correct data way as determined by the tag array. Thus, cor- Both way-prediction and selective direct mapping
rectly way-predicted accesses are as fast as a paralletequire predicting the behavior of accesses. Because stores
access with the low energy of a sequential access. Butchange program state, store accesses cannot use predicted
mispredicted accesses increase both energy and accessformation. Therefore, way-prediction and selective-DM
time due to the second probe. If the prediction accuracy isapply only to loads. Stores check the tag array first to deter-
high, the energy and timing penalty of the second probe ismine the matching way and then probe and write into only
tolerable. the matching way, even in conventional parallel access

As outlined in Section 1, selective direct-mapping caches. Thus, stores do not waste energy and do not need
(selective-DNI solves way-prediction’s inability to achieve way-prediction or selective direct mapping.
both high accuracy and timely prediction. Selective-DM
isolates non-conflicting accesses and explicitly maps them2.2 Way-prediction and selective-DM for d-caches

In this section, we discuss potential prediction sources
and needed structures for using the schemes on d-caches.

1. Each data and tag way may further be divided into subarrays in
a modern cache design. Subarrays do not impact the energy wasl:z_z_1 Way-prediction
age associated with reading the N ways in a set-associative cache;
therefore we do not show subarrays in the figure, nor include sub-
arrays in our discussions.

In general, way-prediction schemes look up a prediction
table using a handle to index into the table and obtain the



predicted way number. The predicted way number mu_st Peconfiict prediction  table D-cache

made available before the actual data address to avoid any tag array dataaray | evicted
delay in the initiation of every cache access. This stipula-Loadins block addr
tion rules out the technique in [13] that uses the data |PC b
address as the handle. Two viable handles are: the load PC
and approximate data address formed by XORing the
load’s source register with the load offset. The XOR-
approximation was proposed in [3] for zero-cycle loads,
and used in [10] to improve set-associative d-cache access ¢ ¢
times. ¢/YES: Perform paraIIeI

These two handles represent the two extremes of the sequential, or

trade-off between prediction accuracy and early availabil- Conflicting Load? Way-predicted access
ity in the pipeline. The PC is available much earlier than
the XOR approximation but the XOR approximation is

more accurate. XOR operation on a register value oftenF|GURE 2: Prediction framework for selective-DM.

obtained late from a register-forwarding path followed by a Flagging an access to use direct mapping or set-associa-
table lookup, is likely to be slower than a full add to com- 4 mapping is similar to way-prediction in its timing
pute the address, delaying access initiation. In ContraSt’requirements. The identification of the mapping needs to
PC-based way-prediction allows at least six pipeline stagesys ' made early in the pipeline to avoid any delay in the
(fetch through execute stages) for the lookup, making the ., he aecess, as discussed in Section 2.2.1. Because this

predicted way-number available well before the data jjentification also uses a table lookup much like way-pre-

address. The PC-based scheme relies on a load accessing-tion. we use the PC to look up the mapping to be used
the same block repeatedly. Previous studies have showfq, the access. Previous studies have shown that most

that such per-instruction block Iocality_ is fairly prevalent misses are caused by a few instructions [1], implying that
due to common code patterns [4]. For instance, a load in &yengifying the few will allow us to use direct mapping for
loop accessing different words of a cache block (€.9., yhe rest of the instructions. Unlike way-prediction, which
sequential array elements) in different iterations, or a l0ad o4 ires for each load instruction a prediction of one of N
in a loop accessing the same word in a block in different o iqns for an N-way set-associative cache, selective direct
iterations (e.g., a global static variable). mapping requires only a binary choice of using direct-map-
ping or set-associative mapping. This binary choice allows
us to achieve accurate prediction using the PC.

S .2 We maintain a prediction table indexed by the load PC
conflicting cache blocks so that non-conflicting accesses, it each entry consisting of a two-bit counter with values

are placed in direct-mapping ways. Based on this isolation, g1 rating at 0 and 3. The counter value is used to deter-
accesses need to be flagged to use direct-mapping for NONg,ine if the cache should be probed using direct or set-asso-
conflicting blocks and set-associative mapping for conflict- ¢iaiive mapping. If a cache read results in a hit using the
ing blocks. This framework is depicted Iigure 2.Set-  irect-mapping way, the counter is decremented. If a read
associative mapping may further employ parallel, sequen-oq i in a hit using a set-associative mapping way, the
tial, or way-prediction to achieve an acceptable perfor- oo nter is incremented. Counter values of 0 and 1 flag

mance-energy poin_t._ direct-mapping, and values 2 and 3 flag set-associative
To identify conflicting blocks, we count the number of mapping.

times a block is evicted. Cache blocks are considered non- Both selective-DM and way-prediction use simple

conflicting by default and are placed in their direct-map- 5615 tables to perform their prediction. Because the
ping way. We identify conflicting blocks by maintaining a 565 are small with respect to the caches, their energy

list of victim (i.e., replaced) block addresses. On a replace- e rhead is small; however, we account for the overhead in
ment, the evicted block increments its entry’s counter in our results in Section 4.

the victim list if it is already present in the victim list; oth-

erwise, a new victim list entry is allocated. If the count 2 3\Way-prediction for i-caches

exceeds two, the block is deemed conflicting and placed in

its set-associative position to avoid future conflicts. Previ-  Timely and accurate way-prediction for i-caches can be
ous papers have shown that using a victim list capturesimplemented by extending branch prediction concepts. The
replacements occurring within a short duration, and effec- fetch hardware performs branch prediction to determine
tively identifies conflicts. the next PC while accessing the i-cache with the current
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address;count

hit?

Block conflicts?

Y: Place in SA position
N: Place in DM position

data

NO: Perform Selective-DM access

2.2.2 Optimizing selective-DM: identifying conflicts
Selective-DM requires isolating conflicting from non-



Table 1: System configuration parameters.

v

branch direction predictor

Instruction issue & 8 issues per cycle
| roll back (rare) | g decode bandwidth
3 L1 i-cache 16K, 4-way, 1 cycle
Next Base L1 d-cache 16K, 4-way, 1 or 2 cycles, 2 ports
PC L2 cache 1M, 8-way, 12 cycle latency
——> |ret addr stack —» To i-cache Memory access latency] 80 cycles + 4 cycles per 8 bytes
branch target Reorder buffer size 64
»| buffer >\| LSQ size 32
J way > Branch predictor 2-level hybrid
current prediction - . _ _
PC probe the matching data way a second time, incurring extra
energy and access time, exactly as in d-caches. The energy
and access time are identical to those of d-cache way-pre-

diction given in Section 2.1. In our results, we show that,
FIGURE 3: Fetch and i-cache access mechanism unlike d-caches, i-caches exhibit way-prediction accuracy

PC. Because i-cache accesses occur at the beginning of thigh enough to make energy and time penalty of way
pipeline, we use the PC of the previous access for way-pre-mispredictions small. The small penalty means we do not
diction. Way-prediction is performed along with branch Nneed selective-DM for i-caches. Our scheme adds log n bits
prediction so that way-prediction does not add any delay tot© €ach entry of the BTB, SAWP and RAS for an n-way
the i-cache access. By the time the previous i-cache acces§et-associative i-cache. In our results, we account for the
is complete, the next predicted PC and the predicted wayenerdy overhead due to this addition.
are ready.

Existing high-performance processors use a branch tar-3 Methodology
get buffer (BTB) to determine the next fetch address for , . .
predicted taken branches. Next-line-set-prediction suppliesS S-[Z?TE 1Ti20v;s g;g t?\ifi;ﬂg?gg@go? :ZZjith:t?o?r[ch)l]a;?j
a way-prediction for taken branches [9]. We extend this y | pap P y-p

. - selective-DM [4] show that the access time of a set-asso-
concept to provide way-predictions when the next addressciative cache employing these techniques is less than that
does not come from the BTB. For not-taken branches and bloying q

. of a parallel access cache. Because we do not want to
sequential fetches (non-branches), we use an extra table

called the Sequential Address Way-Predictor (SAWP) ;fgrﬁltaf?ésessspt?r;teari]:q V\r/gvvgz:gnt& 'Sislact;g;}z:%y ricri]lgtlor\
table, which is indexed by the current PC. At first glance, P 9 gy

the SAWP might seem unnecessary, because the inCre(_jelay, we conservatively assume that these techniques do

mented PC would map to the same way as the current PC.nOt change access times. Note that this assumption does

However, successive PCs may not fall within the same way.not give our energy-saving techniques any ad\_/antage, but
. actually accentuates any performance loss incurred by
For function returns, we augment the return address stac

. hem. In Section 4.1, Section 4.2, and Section 4.3, we com-
(RAS) to provide not only the return address but also the . : .
: . . pare our technigues against an aggressive, 1-cycle, 4-way
return address’s way. Figure 3 depicts the fetch hardware. o . )
. . set-associative parallel access cache, and in Section 4.4, we
Shaded components are not present in a conventional sys-

tem but are part of our way-prediction mechanism compare against a more realistic 2-cycle cache.
On a branch misprediction, the correct next PC comes We modify Wattch [6] and incorporate SimpleScalar

L ; 3.0b [8] madifications to simulate a high-performance out-
from branch resolution in the processor. There is not ; . X
. . of-order microprocessor executing the Alpha ISA. We esti-
enough time between the resolution and the next fetch to ?
- mate overall processor energy using Wattch and cache and
look up a way-prediction structure. Because branch " ; .
. - . prediction table energy using Cacti scaled for a 0.25
mispredictions are infrequent, our scheme defaults to par-"_. T
. ! -~ - micron process [18]. To ensure that cache circuitry is com-
allel access. It is also possible that the way-prediction atible with parallel. serial direct-manped. and sequential
structures do not return a prediction (i.e., the current pcP P ' ' bped, q

. . . accesses, all caches use set-associative geometry for the
misses in the way-prediction structures). In that case too, ; : . . .
address decoding and output logic. In configurations using
our scheme defaults to parallel access.

A correctly way-predicted fetch (irrespective of whether way-prediction or sele_c tive direct mapping, our prgdmn_o n
. . tables have 1024 entries. In systems using selective direct
it is correctly branch predicted or not), accesses the tag

: . : mapping, our victim list has 16 entries. Table 2 shows the
array and the predicted data way. Way mispredicted femhesoenpc%mgarks used for our study, the corresponding inputs




Table 2: Applications and input sets. 8 O Relative Energy-Delay B Performance Degradation 8
. — 80.4 0.42
name input | #of inst(billions) a 8
nteger benchmarks 2 g
gce ref 0.345 %0 2 O'Zg
go ref 1.07 E E
l train 0.207 50-0 S T " 00¢
m88ksim train 0.135 S \QQQQ §& N &%‘f’ RO & & & S
perl train 1.07 FIGURE 4: Sequential-access cache energy-delay.
Ug:ex :Z:tn 0'10‘(5); Sect?on 4.4, an(_j overall processor ene_zrgy-delay in
Floating point benchmarks Section 4.5. Section 4.1 shows that sequential access saves
applu train 1.07 energy at the cost of performance and hence is an inade-
fpppp train 0.234 guate solution for energy savings. Section 4.2 shows that
mgrid train 1.07 way-prediction based on early available PC is inaccurate
swim test 0.492 and does not reduce energy-delay much, and way-predic-

and the number of dynamic instructions executed. tion based on late available XOR approximation may
Modern caches typically use subarrays at the circuit- Impact timing. Section 4.3 shows that sglectlve_-DM ba_sed
level to optimize for speed and energy. We assume anqn_PC significantly redu_ces energy without mtrqducmg
energy-efficient baseline cache, which activabedy the timing pro_blems. In Section 44 we vary cac_he size, set-
subarrays containing the addressed set (including all the@Ssociativity, and latency, showing that selective-DM is an
ways in the set) and not all the subarrays. Subarrays, how-Effective means of energy redu<_:t|on _for larger a_md slower
ever, cannot reduce the energy wasted in reading all thec@ches and that the energy savings increase with set-asso-
ways of a conventional set-associative cache. ThereforeCiativity. In Section 4.5, we show that way-prediction is
subarrays, even if energy efficient, do not nullify the sav- €fféctive for i-caches. Finally, in Section 4.5, we show that
ings achieved by our techniques. It is possible that activat-c0mbining selective-DM for d-caches and way-prediction
ing only the subarrays containing the addressed set ma))‘or i-caches reduces overall processor energy-delay by 8%.

encroach upon timing constraints. In that case, additional4 1E . . tial d h
opportunities to save the resulting subarray energy wastage™ nergy savings In sequential access a-caches

exist, and may be exploited by extending our techniques.
Such extensions are beyond the scope of this paper.

We also modify Cacti to compute the energy component
of our prediction structures. This component is included in
all the relevant energy calculations but is always less than
1% of the conventional d-cache energy because our predic
tion tables and victim lists are small (less than 1 K and 0.06
KB respectively). We include the tag array energy, which is
about 6% of the conventional d-cache energyalircalcu-

In this section we discuss performance and energy con-
siderations for a sequential access, assuming two cycles
per access. Because this configuration avoids the energy
wastage of reading multiple ways during a cache access,
we expect significant energy savings over a parallel access
‘cache. However, we expect sequential access caches to
incur significant performance degradation due to their
respectively higher miss ratios and longer access latency.

lati houah hni - v the d Cacti simulations indicate that avoiding parallel reads
ations even though our techniques optimize only the data, g g5 jn significant energy savings. Table 3 shows cache

array energy and not the tag arr a)./l er|1ergy, as r?entiot:\e(r:i] a{energy dissipation for parallel and sequential access cache
the beginning Of, Section 2. $|m| arly, we include i C?t reads as well as cache writes. As expected, the parallel read
Ipads and stores in all calculations, although our optimiza- dissipates approximately four times as much energy as the
tions do not apply to stores. sequential read. It is worth noting that the write energy is

not affected by the read configuration because all cache

4 Results writes probe only one way, as mentioned at the end of

We present cache energy-delay in Section 4.1 throughSection 2.1. ,
While sequential access allows all cache reads to access

Table 3: Cache energy and prediction overhead. only one way, the energy savings comes at the expense of

|_Energy component Relative Energy performance. Figure 4 shows energy-delay and perfor-
Parallel access cache read (4 ways rea) 100 mance for a sequential-access cache relative to a 1-cycle,
Sequential-access, way-predicted, or direct-mp- 021 parallel access cache. The black bars represent perfor-
ping access (1 way read) . . .
Cache write 0.24 mance degradation; the lighter bars represent relative d-
Tag array energy (also included in all above rodfs) olos Cache energy delay (i.e., relative d-cache energy multiplied
1024 entry x 4 bit prediction table read/write o.op7 Dby relative execution time for each application). While
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FIGURE 5: PC- and XOR-based way-prediction . FIGURE 6: Selective-DM schemes.
sequential access achieves energy-delay savings of 68%narks with the lowest accuracy in the XOR-based scheme
over a parallel access cache by always accessing only onareapplu, mgrid,andswim,which have the highest cache
way, the average performance degradation 11% (maximummiss rates of 7%, 5%, and 25% respectively.
degradation is 18%) for the sequential access cache. The differences in relative energy-delay between PC
The primary reason for this degradation is the substan-based and XOR based way-prediction are primarily due to
tial latency increase for the sequential access cache. thavariation in prediction accuracy and the associated perfor-
occurs becauseveryaccess takes two cycles. This weak- mance degradation. The average performance degradations
ness means sequential access is not an acceptable solutiare 2.9% and 2.3% for each scheme, while the average rel-

for energy reduction in high performance d-caches. ative energy-delay reductions are 63% and 64%. The fairly
_ _ _ low performance degradations occur because most of the
4.2 Energy savings in way-predicted d-caches applications can overlap the additional latency of a small

) ) ) . number of mispredicted d-cache accesses. However, the
_ Inthis section we discuss the accuracy, energy, and tim-jqver energy-delay reduction of PC-based way-prediction,
ing considerations for two forms of way-prediction. Way-  compared to the 68% energy-delay reduction of sequential
prediction may be based on either early available or late ;. agg cache, makes it a suboptimal solution for energy
available information, as discussed in Section 1. While use oq,ction. A larger prediction table does not improve the
the early available PC ensures timely way—prediction, We pC.based scheme's accuracy (energy-delay and perfor-
expect PC-based way-prediction to experience low acCu-mance change less than 1% for a 2048 entry table), and
racy. Late available XOR-b_ased approximation of the pance does not improve energy-delay reduction.
bloek address should. have .hlgher accuracy. We assume an \while XOR-based way-prediction is more accurate, the
additional cycle for mispredicted accesses. technique must meet a difficult timing constraint in order to
Figure 5 shows our results for PC-based and XOR- 5iq impacting the cache critical path. For a 1024-entry
based way-prediction. The light and dark bars of the t0p yaqiction table, the size suggested in [10], Cacti estimates
graph represent relative energy-delay and relative perfor-y o+ taple lookup time is 48% of the 16K 4-way cache
mance with respect to a 1-cycle, parallel access cache. The,ccass time itself. The lookup time is likely to be larger
bottom graph depicts pregﬁchon accuracy for each schemey, 1 the time required to compute the actual address via a
PC-based way-prediction has an average accuracy of| aqd, delaying the cache access. This result makes the

60% in contrast to XOR-based prediction’s 70%. The dif- yoR scheme hard to implement in high-performance sys-
ference is consistent with the fact that the PC does not pro-o s

vide information about the actual address and is most

effective in exploiting per-instruction block locality. In 4.3 Obviating way-predictions with selective-DM
contrast, the XOR of the load address components is a rea-

sonable approximation of the block address. The bench- In this section, we evaluate the use of selective-DM to



Table 4: D-cache miss rates.

Technique applu fpppp gcce go li m88ksim| mgrid per Swin troff vorte
Direct-mapped 8.2 6.3 5.1 59 4] 35 5|4 3.0 23.3 p.7 3.1
4-way Set-associative 7.0 0.p 3[3 2|0 3.3 1.3 5.1 n.3 45.2 0.8 1.8

reduce d-cache energy and obviate the need for way-precache reads per application, incur a latency penalty. This
diction for most accesses. Selective-DM uses the PC tolower penalty is a significant improvement over PC-based
predict direct-mapping placement for the majority non- way-prediction which consumes an extra cycle on an aver-
conflicting d-cache accesses, avoiding the timing and accu-age of 40% of accesses due to low accuracy. All DM
racy concerns of way-prediction. The non-conflicting accesses correctly predicted as non-conflicting and all par-
accesses probe only the direct-mapping way, avoiding theallel accesses predicted conflicting have a latency of one
energy wastage of parallel access. For the remaining con<cycle.
flicting accesses, we evaluate the use of parallel, way-pre- The high energy parallel access energy of the conflict-
dicted, and sequential access for their impact on energying accesses may be eliminated in one of two ways. The
and performance. We expect the combination of selective-conflicting accesses may be converted to sequential access
DM and way-prediction to approach the low energy dissi- or way-predicted. The simplest choice is to use selective-
pation of a sequential access cache while maintaining per-DM in combination with sequential access, achieving an
formace close to that of a parallel access cache. As beforeaverage energy-delay reduction of 73% with an average
a mispredicted access due to either way-prediction orperformance degradation of 3.4%. An incremental exten-
selective-DM takes an extra cycle. sion to this scheme adds a way number to the prediction
Figure 6 depicts our results for selective-DM. As in ear- table, allowing way-prediction instead of sequential access.
lier sections, the top graph shows energy-delay and perfor-Adding PC-based way-prediction decreases average per-
mance degradation relative to a system using a 1-cycle formance degradation to 2.4% but also decreases average
parallel access cache. The leftmost bar for each applicationrenergy-delay reduction to 69%. Both of these configura-
represents selective-DM in combination with parallel tions achieve energy-delay savings above the 68%
access. The second bar depicts selective-DM supplementedchieved by sequential access, without incurring its 11%
with PC-based way-prediction for the remaining accesses.performance degradation.
The third bar shows selective-DM with sequential access Of the two configurations discussed above, selective-
for conflicting cache reads. The fourth and fifth bars are DM plus way-prediction is slightly better for performance
PC-based way-prediction and sequential access; they arbecause it maintains one-cycle latency for correctly way-
repeated from earlier graphs for reference. The bottompredicted accesses. However, each additional misprediction
graph breaks down the various types of cache accessesauses an energy-wasting second probe. Conversely, selec-
direct-mapped, parallel, way-predicted, sequential, andtive-DM plus sequential access is the better choice for
mispredicted, which includes both incorrect way-predic- energy because all conflicting accesses dissipate low
tions and accesses mispredicted as direct-mapped. energy in this scheme. The only two exceptionsraggid
Selective-DM correctly predicts an average of 77% of and swim in which the configurations with sequential
all d-cache reads as non-conflicting accesses. Such accuaccess and way-prediction have energy delays within 1%
racy is reasonable considering: (1) selective-DM uses PCof each otherFFor mgrid, over 99% of cache accesses are
to predict, and (2) selective-DM identifies more than 60% nonconflicting; therefore the choice of handlers for con-
of cache accesses as non-conflicting even for applicationdlicting accesses is irrelevant. Fewim,the d-cache miss
requiring set-associativity. This claim is borne out by rate is approximately 25% so the L2 cache latency controls
Table 4, which shows that there are significant differencesperformance more than the extra cycle required to retrieve
in the miss rates between direct-mapped and conventionatonflicting cache hits.
4-way set-associative cache exceptgaimwhich experi-

ences pathological misses in the 4-way cache. As was the Table 5: D-cache summary.

case for PC-based way-prediction, increasing the size df Technique % Avg. % Avg. Problem

the prediction table does not impact the prediction accu E-delay | Perf. Loss

racy of selective-DM. : Savings :
Unfortunately, using parallel access for the conflicting| Seduental-Access cache 8 1 e raré'ggoze .

accesses incurs hig_h energy d.issipation. These parallelye poceq way-prediction 6 2b |o?N e-savinlgs

accesses are the primary contributor to the low energyr xor-pased way-predictior] 6 5 timing

delay reduction (average of 59%) and low performance sei-pm +parallel access 5 2D low e-savings

degradation (average of 2.0%) of this configuration. Only| Sel-DM +way-prediction 6 2.

conflicting accesses mispredicted as DM, averaging 6% of Sel-DM +sequential accesp 4
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In Table 5, we summarize the energy-delay and perfor-
mance of the various d-cache design options. From thisaddress, and the table does not need additional entries for
table it is clear that selective-DM supplemented with the added cache sets. Additional simulations (not shown)
sequential access or way-prediction achieve the highesindicate that increasing the size of the prediction table to
energy-delay reduction with least performance degrada-2048 entries has minimal effect on performance or energy
tion. The rest of the options achieve low energy-delay (< 0.2% change for both) for the 32K cache.
reduction or high performance degradation, or have critical ~ Unlike size, increasing set-associativity significantly

path timing problems. increases the opportunity for energy savings. As discussed
) in Section 2, an N-way parallel access cache wastes energy
4.4 Effect of cache parameters on selective-DM by accessing (N-1) more ways than necessary. Figure 8

shows results for 16K 2-way, 4-way, and 8-way set-asso-
ciative caches. Relative energy-delay is computed with
respect to a 1-cycle, parallel access cache of the same asso-
‘ciativity. The graph clearly depicts the trend of increasing
‘energy savings; the average energy-delay reduction for 2-

ay, 4-way, and 8-way caches is 38%, 69%, and 82%
respectively. One problematic applicatioswim, experi-
ences substantial performance degradation in the 8-way
case because pathological conflicts cause the miss rate to
increase more than 5% above that of a parallel access 8-
way cache.

Two additional trends relating to increased set-associa-

In this section we evaluate the effect of varying conven-
tional cache parameters on selective-DM schemes. First
we discuss the impact of increasing the cache size to 32K
Second, we evaluate the energy savings for 2-way and 8
way set-associative caches in addition to the 4-way cache
already studied. Finally, we evaluate the impact of increas-
ing the base d-cache latency from 1 cycle to 2 cycles.

We do not expect an increase in cache size to impact
substantially the opportunity for energy savings. Figure 7
compares the results for selective-DM plus PC-based way-
prediction for 16K and 32K caches. Relative energy-delay
is computed with respect.to a l-cycle, pa.rall-el access 4"[ivity are apparent from the bottom graph of Figure 8. The
way cache of the same size. The results indicate that th

32K h hi gel : irst is that the number of mispredictions increases slightly
cache achieves an average energy-delay savings of set-associativity because a random way-prediction is

63% with an average performance degradation of 2.1%(.L

Th b imilar to th ¢ 69 ess likely to be correct when there are more ways. The
€S€ numoers are simiiar to the averages o © aNGsecond trend is that the number of non-conflicting accesses

o .
.2'4 % for 16K c_ach_es. The primary reason for_the decreasedoes not decrease dramatically with increasing set-associa-
in savings as size increases is because certain energy Conf'vity, helping selective-DM to scale well. The fact that
pggents ndot af;ecte_d by our Sﬁhirt?e’ such as ta;_g enefrgty ?nldmst accesses remain non-conflicting allows selective-DM
address decode, Increase Sightly as proportion ot total,, exploit the increased energy-saving opportunity in
cache energy. It is also worth noting that the misprediction

te did not i though did not le the si highly associative caches.
rate did notincrease even though we did not scale the size Finally, we show results for selective-DM when the

of the 1.0 24 entry dpr?_dlct]org) tabl(;a for tthheSéK C"’:(’;Ee' J hekbase d-cache latency is increased to 2 cycles. As intercon-
reason 1S our prediction Is based on the FL, not the BloCK,q .t |atencies become more significant, microprocessors
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cycle consists of wire delay. When selective-DM plus way- 204
prediction, Selective-DM plus sequential access, or
sequential access is applied in this situation, a mispredicted™ 0.0
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impe_lcting perfo_rmance. , FIGURE 10: Way-prediction for i-caches.
Figure 9 depicts results for selective-DM plus way-pre- From the bottom graph, we see that overall prediction

diction, selective-DM plus sequential access, and sequen- S )
. accuracy is high. Accuracy is greater than 92% for all
tial access for a 2 cycle d-cache. Energy-delay values are

relative to a 2-cycle, parallel access cache. Selective-DMapphcatlonS. exceplpppp,whph has_ a large, confllctlng
7 . - code footprint that thrashes in the i-cache, lowering way-
plus way-prediction and Selective-DM plus sequential

access achieve average energy-delay savings of 69% anHred'Ctlon accuracy. As indicated by the graph, the branch

; ; . predictor most strongly contributes to correct predictions in
73% respectively with average performance degradation of . S o X
: e branch-intensive integer applications suchgas li, and
2.0% and 3.1% respectively. These results are similar to . . ? L . .
m88ksim Floating point applications with longer basic
those for the 1 cycle cache, and the small performance deg; . )
S o blocks, such aapplu, mgrid,andswimuse SAWP for well
radation indicates the system can absorb the additional )
over 75% of i-cache accesses. The only accesses not pre-
latency of some three cycle accesses. In contrast, sequen

X . . dicted by our scheme are BTB misses and misprediction
tial access incurs performance degradation of nearly 13%’restarts Predicting such a wide range of accesses gives our
2% worse than wit a 1 g/cle cache. This additional degra- ' 9 9 9

T scheme an energy advantage over alternatives such as
dation indicates that the system cannot absorb the latean\lext—line—set-pred?c):/tion whicgh only way-predicts taken

of all d-cache access being 3 cycles without substantial
branches.

performance impact. The top graph indicates we achieve high energy-delay
savings with negligible performance degradation. For 2-
way, 4-way, and 8-way set-associative caches, average

In this section we evaluate energy reduction for i-caches energy-delay savings are 39%, 64%, and 72% respectively.
using way-prediction as discussed in Section 2.3. Becausé?s With d-caches, energy-delay savings increases signifi-
i-cache way-prediction extends from existing, highly accu- cantly with set-associativity because of increased opportu-
rate fetch address prediction, we expect to capture nearlynity for energy savings. Performance degradation is less
all accesses and achieve high energy savings. As with dthan 0.5% for all applications excefgippp, which incurs
caches, we expect energy savings to increase with set-assdligh misprediction rates. Because of high prediction accu-
ciativity. racy and minimal performance degradation, way-predic-

Figure 10 shows results for 16K 2-way, 4-way, and 8- tion is highly effective in reducing i-cache energy.
way i-caches using a 1024 entry SAWP. As in previous sec- )
tions, the top graph depicts energy-delay and performance?-6 D- and |-cache: processor energy-delay savings
degradation relative to a 1-cycle, parallel access i-cache.
From bottom to top, the subbars on the bottom graph repre-
sent accesses correctly predicted by the SAWP, access
correctly predicted using the branch predictor (BTB and
RAS), parallel accesses not predicted, and mispredicte
accesses.

4.5 Way-prediction for i-caches

In this section, we present results for overall processor
energy-delay when selective-DM plus way-prediction for
-caches is combined with i-cache way-prediction. Our
imulations indicate L1 i-caches and d-caches dissipate
0% to 16% of the overall processor energy, depending on
the application. Out of this achievable overall energy sav-



O Relative Eneray-Delay M Performance Degradation orthogonality, there are important differences. First, selec-

10 energy-delay saving_s ) 0'2_5 tive cache ways is a coarse-grain approach which decides
for perfect way-prediction g whether an entire application requires set associativity or
0oL I 1§> not. I_n contrast, se!ec_tiye—DM dec_ides whe_thgr each access
g requires set-associativity or not (i.e., conflicting or not). If
§ an application uses all the cache ways, selective cache
0. Og ways cannot achieve any energy savings but selective-DM
o

can filter out the majority non-conflicting accesses. For
instance, using a 32K 2-way d-cache, selective cache ways
cannot achieve any savings in six of the eight benchmarks,
including fpppp, with less than 4% performance loss [2].

Selective-DM plus way-prediction achieves 38% energy-
|

o ®

o
©
T

1

delay reduction for a 16K 2-way d-cache, including 37%
for fpppp with similar performance loss. Note that it is
harder to achieve energy savings in a smaller cache without
impacting performance, and selective-DM achieves more
relative energy savings for a smaller cache. Second, selec-

ings, performance degradation lessens actual savings duive cache ways requires manual or software configuration
to the energy dissipated by the processor in the extrato choose the number of active cache ways per program,
cycles. but selective-DM is a transparent, hardware-only tech-
Figure 11 depicts relative energy-delay, performance hique.
degradation, and relative overall energy. The top graph Other proposals that specifically focused on reducing
shows energy-delay and performance degradation relativecache energy dissipation. Many of these propose placing
to a processor using 1-cycle, parallel access i- and d-small energy-efficient buffers (e.g., 128-256 bytes in size)
caches; the bottom graph shows relative energy. For d-in front of caches to filter traffic to the cache. Examples
caches, we use selective-DM plus way-prediction as ininclude block buffers [7,17], filter cache [15], and loop
Section 4.3. For i-caches, we use way-prediction as incache [5]. Filtering, however, is only effective when appli-
Section 4.5. Note that there are two differences with cation working sets are extremely small and is otherwise
respect to previous graphs: relative energy-delay and perhot applicable. Moreover, when working sets do not fit, fil-
formance degradation are on different scales, and relativetering increases the critical path access time for accessing
energy-delay starts from 0.8. cached information and may significantly reduce perfor-
Our average relative energy savings is 9% with most mance. To reduce leakage energy dissipation, Powell, et al.
applications experiencing savings between 6% and 12%.[19], propose a dynamically resizing i-cache, and Kaxiras
Taking into account performance degradation, the averageet al. [14] propose using cache decay. These papers do not
relative energy-delay reduction is 8%, compared to a 10%address dynamic energy, but only leakage energy.
reduction assuming perfect way-prediction and no perfor- .
mance degradation. Most applications experience energyf Conclusions
delay savings between 3% and 10%. L . ,
The only exception among the applicationsrigksim, . Set-associative caches minimize access time by access-
which experiences a pathological speedup as a result of iN9 all the data ways irparallel W'th, the ta@! lookup,
cache way-prediction. Way-prediction misses in the BTB although the output O,f only the matchmg_way is used. The
allow additional time for branch resolution, substantially energy spent accessing thg other ways 1S Wasted. Thg key
increasing branch prediction accuracy and resulting in a0 energy reduction is to pinpoint the matching way with-

15% speedup. None of our other applications exhibit this out probing all of the ways. Eliminating the wasted energy
behavior. by performing the data lookupequentiallyfollowing the

tag lookup substantially increases cache access time, and is

5 Related Work unacceptable for high-performance L1 caches.

In this paper, we applied two previously-proposed tech-

Selective cache ways [2] pioneered reducing cacheniques, way-predictionand selective direct-mappingto

energy by turning off unneeded ways in a set-associativereducing L1 cache dynamic energy while maintaining high
cache. Our techniques are orthogonal to selective cach@erformance. Way-prediction and selective direct-map-
ways in that our techniques can be used on the ways thaping predict the matching way number and provide the pre-
are left active by selective cache ways. Apart from this diction prior to the cache access, instead of waiting on the
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tag array to provide the way number as done by sequential
access. Predicting the matching way enables the techniques
not only to attain fast access times but also to achievel7]
energy reduction. The techniques reduce energy because
onlythe predicted way is accessed. While these techniques
were originally proposed to improve set-associative cache
access times, this is the first paper to apply them to reduc-
ing energy.

We evaluated the effectiveness of these techniques in
reducing L1 d-cache, L1 i-cache, and overall processor
energy. Using these techniques, our caches achieve th
energy-delay of sequential access while maintaining the
performance of parallel access. Relative to parallel access
L1 i- and d-caches, the techniques achieve overall proces{10]
sor energy-delay reduction of 8%, while perfect way-pre-
diction with no performance degradation achieves 10%
reduction. This overall reduction combines L1 d-cache
energy-delay reduction of 69% and L1 i-cache energy- [11]
delay reduction of 64%. The performance degradation of
the techniques is less than 3%, compared to an aggressive,
1-cycle, 4-way, parallel access cache. [12

(8]
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