
Reducing Set-Associative Cache Energy via Way-Prediction and Selective Direct-Mapping
Michael D. Powellϒ, Amit Agarwalϒ, T. N. Vijaykumarϒ, Babak Falsafi✝, and Kaushik Royϒ

✝Computer Architecture Laboratory
Carnegie Mellon University

babak@cmu.edu

ϒSchool of Electrical and Computer Engineering
Purdue University

{mdpowell,amita,kaushik,vijay}@ecn.purdue.edu

http://www.ece.purdue.edu/~icalp

To appear in theProceedings of the 34th International Symposium on Microarchitecture (MICRO 34), 2001.

and
the
e
the
al

ur-
ys
si-

ic
o
t
y

.
ray

ss
ess,
uch
the

h-

g
t-
he
n
en-
ch-
to
rgy
e
o-

ply

r-
he
an
Abstract

Set-associative caches achieve low miss rates for typical
applications but result in significant energy dissipation.
Set-associative caches minimize access time by probing all
the data ways in parallel with the tag lookup, although the
output of only the matching way is used. The energy spent
accessing the other ways is wasted. Eliminating the wasted
energy by performing the data lookup sequentially follow-
ing the tag lookup substantially increases cache access
time, and is unacceptable for high-performance L1 caches.
In this paper, we apply two previously-proposed techniques,
way-prediction and selective direct-mapping, to reducing
L1 cache dynamic energy while maintaining high perfor-
mance. The techniques predict the matching way and probe
only the predicted way and not all the ways, achieving
energy savings. While these techniques were originally pro-
posed to improve set-associative cache access times, this is
the first paper to apply them to reducing cache energy.

We evaluate the effectiveness of these techniques in
reducing L1 d-cache, L1 i-cache, and overall processor
energy. Using these techniques, our caches achieve the
energy-delay of sequential access while maintaining the
performance of parallel access. Relative to parallel access
L1 i- and d-caches, the techniques achieve overall proces-
sor energy-delay reduction of 8%, while perfect way-pre-
diction with no performance degradation achieves 10%
reduction. The performance degradation of the techniques
is less than 3%, compared to an aggressive, 1-cycle, 4-way,
parallel access cache.

1 Introduction

High-performance caches dissipate significant dynamic
energy due to charging and discharging of highly-capaci-
tive bit lines and sense amps. As a result, caches account
for a significant fraction of the overall chip dynamic
energy. For instance, Pentium Pro consumes about 33% of
chip power in instruction fetch and d-cache together [16],
and Alpha 21264 consumes about 16% in caches [12].

To achieve low miss rates for typical applications, mod-
ern microprocessors employ set-associative caches. Fast,

set-associative cache implementations probe the tag
data arrays in parallel, and then select the data from
matching way, which is determined by the tag array. At th
time of precharging and reading the tag and data arrays,
matching way is not known. Consequently, convention
parallel accesscaches precharge and readall the ways but
selectonly oneof the ways on a cache hit, resulting in
wasted dynamic energy dissipation. For example, a fo
way set-associative cache discards three of the four wa
on every access, wasting nearly 75% of the energy dis
pated.

There are various options for reducing cache dynam
energy with different performance impact. The key t
energy reduction is to pinpoint the matching way withou
probing all of the ways. One option to avoid high energ
dissipation at the cost of slower access is by usingsequen-
tial access, employed in the Alpha 21164’s L2 cache [11]
In sequential access, the cache waits until the tag ar
determines the matching way, andthen accesses only the
matching way of the data array, dissipating about 75% le
energy than a parallel access cache. Sequential acc
however, serializes the tag and data arrays, adding as m
as 60% to the cache access time [18]. The impact on
access time precludes sequential access for L1 caches.

In this paper, we apply two previously-proposed tec
niques,way-prediction[10,4] andselective direct-mapping
[4], to reduce L1 dynamic cache energy while maintainin
high performance. Way-prediction and selective direc
mapping predict the matching way number and provide t
predictionprior to the cache access, instead of waiting o
the tag array to provide the way number as done by sequ
tial access. Predicting the matching way enables the te
niques not only to attain fast access times but also
achieve energy reduction. The techniques reduce ene
becauseonly the predicted way is accessed. While thes
techniques were originally proposed to improve set-ass
ciative cache access times, this is the first paper to ap
them to reducing energy.

The choices for d-cache way-prediction are to use info
mation available either early in the pipeline, such as t
program counter (PC), or later in the pipeline, such as

he
el

2
es.
e-

ic-
e
in
e

the
ign

is
he
re,
er

d
(a)
n-
in

ws
or
ed
XOR-based approximation of the load address [3]. Unfor-
tunately, both choices have problems. Way-prediction
based on information from early pipeline stages suffers
from poor accuracy, and way-prediction based on late pipe-
line information introduces way-prediction table lookup
delay in the cache access critical path [4]. For instance, the
way-prediction scheme used in [13] inserts a table lookup
after the address generation to identify the predicted way.
Therefore, way-prediction is not nearly as effective for d-
caches as it is for i-caches.

Fortunately, a majority (70% - 80%) of L1 d-cache
accesses can avoid way-prediction altogether by using
selective direct-mapping [4], and achieve low energy dissi-
pation without performance loss. These accesses are the
non-conflicting accesses (i.e., they do not map to the same
set as another access) which can use direct mapping
instead of set-associative mapping. In direct mapping, an
address explicitly maps to only one of the N ways of a set-
associative cache as if it were a direct-mapped cache; the
address (and not the tag array) directly determines the
matching way. Consequently, selective direct-mapping
avoids the energy wastage of reading the other ways, with-
out the need for way-prediction for the majority, i.e., non-
conflicting, accesses. The rest of the accesses can be either
way-predicted based on early available information with
reasonable accuracy, or sequentially accessed with little
performance loss.

I-cache way prediction can be integrated with branch
prediction to achieve both high accuracy [9] and timeli-
ness. Consequently, i-cache way-prediction achieves sub-
stantial energy reduction and obviates the need for
selective direct-mapping for i-caches. The original pro-
posal [9] way-predicts only taken branches, and we extend
it to all instruction fetches, including not-taken branches,
sequential fetches (i.e., non-branches), and function
returns. These extensions allow us to achieve energy sav-
ings on nearly all i-cache accesses.

The main results of this paper are:

• Our techniques allow us to approach the performance
of parallel access, set-associative caches with energy
dissipation close to that of sequential access.

• Combining selective direct-mapping for d-caches and
way-prediction for i-caches achieves an overall proces-
sor energy-delay reduction of 8%, compared to a 10%
reduction assuming perfect way-prediction and no per-
formance degradation. The performance degradation of
the techniques is less than 3%, compared to an aggres-
sive, 1-cycle, 4-way, parallel access cache.

• Selective direct-mapping supplemented with way-pre-
diction achieves an average d-cache energy delay
reduction of 69% over a 4-way parallel access L1 d-
cache.

• Way-predicting i-cache accesses achieves an L1 i-cac
energy delay reduction of 64% over a 4-way parall
access i-cache.
The rest of the paper is organized as follows. Section

describes how to reduce energy for cache access
Section 2.2 presents the selective direct-mapping fram
work for d-caches. Section 2.3 describes the way-pred
tion framework for i-caches. In Section 3 we describe th
experimental methodology, and we present results
Section 4. Section 5 presents related work, and finally, w
conclude in Section 6.

2 Reducing cache access energy

In this section, we discuss design considerations and
tradeoffs between energy and performance for the des
options discussed in Section 1. Because the tag array
much smaller than the data array, energy disspiation in t
data array is much larger than in the tag array. Therefo
we apply the energy optimizations considered in this pap
only to the data array, and not the tag array.

2.1 Design options: performance and energy

Figure 1 shows the timing order of the actions involve
in an access under each of the design options. Figure 1
depicts the relevant components and timing of a conve
tional, parallel access read. By reading the N data ways
parallel with the tag array, the set-associative design allo
the data and select signal for the data-selection multiplex
to arrive at nearly the same time. The energy dissipat

No activity

select way

FIGURE 1: Access and timing for design options.

data w
ay 0

data

data way n

tag array data array

...

tag w
ay 0

tag w
ay n ...

drive/mux

Predicted way #

hit?

a: Conventional parallel access
1st stepTiming order:

data w
ay 0

data

tag array data array

...

tag w
ay 0

tag w
ay n ...

drive/mux

b: Sequential access

select way

data data

data way n

data w
ay 0

data

data way n

tag array data array

...

tag w
ay 0

tag w
ay n ...

drive/mux

c: Way-prediction

data

data w
ay 0

data

data way n

tag array data array

...

tag w
ay 0

tag w
ay n ...

drive/mux

d: Selective direct-mapping

predict non-conflicting,

hit?

direct-mapping way #
data

2nd step 3rd step

d
er-
e-
n
in
d
t-
g

th

ds
d
re-
y.
ap-
e
ay
ere
igh
ur

e
c-
e,

y
ut

cted
a
ss

g
res

icted

er-
ly
ss
eed

es
es.

n
he
equalstag array energy+ N * (1 data way energy), and the
access time equalsmax (tag array time, data array time) +
data mux time.1

The above and the following energy and timing expres-
sions are first-order approximations, but sufficient for our
discussions. We include precharge in the energy expres-
sions but do not include precharge in the timing expres-
sions, because precharge time is not a part of access time
[18], and no techniques we use impact precharge timing in
any way.

The simplest solution to pre-determining which data
way should be accessed is to wait for the output of the tag
array, as done in sequential access and depicted in
Figure 1(b). Sequential access deterministically yields the
matching way number without resorting to prediction. Sac-
rificing performance by waiting to access only the correct
way allows the design to achieve low energy on all
accesses. The energy dissipated equalstag array energy +
(1 data way energy), and the access time equalstag array
time + data array time + data mux time. Compared to a
parallel access cache, the sequential access dissipates less
energy of the amount(N-1) * (1 data way energy), but is
slower bymin (tag array time, data array time).Typically,
the access speed difference between sequential and parallel
access is about 60%.

An alternative design that only accesses the one way on
most access is to employ way-prediction as depicted in
Figure 1(c). We describe details of how the prediction is
made in Section 2.2.1, but focus on the access timing and
energy aspects here. Upon an access, the tag array and the
predicted data way are probed simultaneously. On a hit, the
tag array determines that either the predicted data way
holds the data and flags a correct way-prediction or another
data way holds the data and flags a misprediction. On a
misprediction, the data array is accessed again, probing the
correct data way as determined by the tag array. Thus, cor-
rectly way-predicted accesses are as fast as a parallel
access with the low energy of a sequential access. But
mispredicted accesses increase both energy and access
time due to the second probe. If the prediction accuracy is
high, the energy and timing penalty of the second probe is
tolerable.

As outlined in Section 1, selective direct-mapping
(selective-DM) solves way-prediction’s inability to achieve
both high accuracy and timely prediction. Selective-DM
isolates non-conflicting accesses and explicitly maps them

to only one of the N ways, as if it were a direct-mappe
cache. The address (and not the tag array) directly det
mines the matching way obviating the need for way-pr
diction. The isolation is achieved by predicting that a
access is non-conflicting and we describe the details
Section 2.2.2. While way-prediction probes the predicte
way, selective-DM predicts that an access is non-conflic
ing and probes its direct-mapping way. The direct-mappin
way is identified by the address’s index bits extended wi
log2N bits borrowed from the tag.

Selective-DM access, depicted in Figure 1(d), procee
similar to a way-predicted access. A correctly predicte
access probes only the matching data way, and a misp
diction initiates a second probe of the correct data wa
Because most accesses are non-conflicting and are c
tured by selective-DM, a high energy or low performanc
solution, such as parallel or serial access respectively, m
be acceptable for conflicting accesses. For designs wh
conflicting accesses also need to be low energy and h
performance, way-prediction can be employed. In o
experiments, we evaluate several such combinations.

It is apparent from Figure 1(c) and Figure 1(d) that th
energy and timing are similar for way-prediction and sele
tive-DM. For a correctly predicted access in either schem
the energy dissipated equalstag array energy + (1 data
way energy), and the access time equalsmax (tag array
time, data array time) + data mux time. For a mispredicted
access, the second probe increases the energy by(1 data
way energy)and extends the access time bydata array
time. With either scheme, mispredictions incur a latenc
penalty because they require two data array probes. B
because only two data ways are accessed (the mispredi
way and the correct way) in all, the total energy of
misprediction is not as high as that of a parallel acce
when set-associativity is greater than two.

Both way-prediction and selective direct mappin
require predicting the behavior of accesses. Because sto
change program state, store accesses cannot use pred
information. Therefore, way-prediction and selective-DM
apply only to loads. Stores check the tag array first to det
mine the matching way and then probe and write into on
the matching way, even in conventional parallel acce
caches. Thus, stores do not waste energy and do not n
way-prediction or selective direct mapping.

2.2 Way-prediction and selective-DM for d-caches

In this section, we discuss potential prediction sourc
and needed structures for using the schemes on d-cach

2.2.1 Way-prediction
In general, way-prediction schemes look up a predictio

table using a handle to index into the table and obtain t

1. Each data and tag way may further be divided into subarrays in
a modern cache design. Subarrays do not impact the energy wast-
age associated with reading the N ways in a set-associative cache;
therefore we do not show subarrays in the figure, nor include sub-
arrays in our discussions.

cia-

to
e
this

e-
ed
ost
at

h
N
ect
p-
s

C
s
er-
so-
e

ad
he
ag
ive

e
e

rgy
in

e
he
ne
nt
predicted way number. The predicted way number must be
made available before the actual data address to avoid any
delay in the initiation of every cache access. This stipula-
tion rules out the technique in [13] that uses the data
address as the handle. Two viable handles are: the load PC
and approximate data address formed by XORing the
load’s source register with the load offset. The XOR-
approximation was proposed in [3] for zero-cycle loads,
and used in [10] to improve set-associative d-cache access
times.

These two handles represent the two extremes of the
trade-off between prediction accuracy and early availabil-
ity in the pipeline. The PC is available much earlier than
the XOR approximation but the XOR approximation is
more accurate. XOR operation on a register value often
obtained late from a register-forwarding path followed by a
table lookup, is likely to be slower than a full add to com-
pute the address, delaying access initiation. In contrast,
PC-based way-prediction allows at least six pipeline stages
(fetch through execute stages) for the lookup, making the
predicted way-number available well before the data
address. The PC-based scheme relies on a load accessing
the same block repeatedly. Previous studies have shown
that such per-instruction block locality is fairly prevalent
due to common code patterns [4]. For instance, a load in a
loop accessing different words of a cache block (e.g.,
sequential array elements) in different iterations, or a load
in a loop accessing the same word in a block in different
iterations (e.g., a global static variable).

2.2.2 Optimizing selective-DM: identifying conflicts
Selective-DM requires isolating conflicting from non-

conflicting cache blocks so that non-conflicting accesses
are placed in direct-mapping ways. Based on this isolation,
accesses need to be flagged to use direct-mapping for non-
conflicting blocks and set-associative mapping for conflict-
ing blocks. This framework is depicted inFigure 2.Set-
associative mapping may further employ parallel, sequen-
tial, or way-prediction to achieve an acceptable perfor-
mance-energy point.

To identify conflicting blocks, we count the number of
times a block is evicted. Cache blocks are considered non-
conflicting by default and are placed in their direct-map-
ping way. We identify conflicting blocks by maintaining a
list of victim (i.e., replaced) block addresses. On a replace-
ment, the evicted block increments its entry’s counter in
the victim list if it is already present in the victim list; oth-
erwise, a new victim list entry is allocated. If the count
exceeds two, the block is deemed conflicting and placed in
its set-associative position to avoid future conflicts. Previ-
ous papers have shown that using a victim list captures
replacements occurring within a short duration, and effec-
tively identifies conflicts.

Flagging an access to use direct mapping or set-asso
tive mapping is similar to way-prediction in its timing
requirements. The identification of the mapping needs
be made early in the pipeline to avoid any delay in th
cache access, as discussed in Section 2.2.1. Because
identification also uses a table lookup much like way-pr
diction, we use the PC to look up the mapping to be us
for the access. Previous studies have shown that m
misses are caused by a few instructions [1], implying th
identifying the few will allow us to use direct mapping for
the rest of the instructions. Unlike way-prediction, whic
requires for each load instruction a prediction of one of
options for an N-way set-associative cache, selective dir
mapping requires only a binary choice of using direct-ma
ping or set-associative mapping. This binary choice allow
us to achieve accurate prediction using the PC.

We maintain a prediction table indexed by the load P
with each entry consisting of a two-bit counter with value
saturating at 0 and 3. The counter value is used to det
mine if the cache should be probed using direct or set-as
ciative mapping. If a cache read results in a hit using th
direct-mapping way, the counter is decremented. If a re
results in a hit using a set-associative mapping way, t
counter is incremented. Counter values of 0 and 1 fl
direct-mapping, and values 2 and 3 flag set-associat
mapping.

Both selective-DM and way-prediction use simpl
lookup tables to perform their prediction. Because th
tables are small with respect to the caches, their ene
overhead is small; however, we account for the overhead
our results in Section 4.

2.3 Way-prediction for i-caches

Timely and accurate way-prediction for i-caches can b
implemented by extending branch prediction concepts. T
fetch hardware performs branch prediction to determi
the next PC while accessing the i-cache with the curre

FIGURE 2: Prediction framework for selective-DM.

data w
ay 0

data

data w
ay n

tag array data array

...

tag w
ay 0

tag w
ay n ...

drive/mux

hit?

Load instr

Conflict prediction

Conflicting Load?

NO: Perform Selective-DM access

YES: Perform parallel,
sequential, or

D-cache

Victim List

evicted
block addr

address;count

Block conflicts?
Y: Place in SA position
N: Place in DM position

way-predicted access

 PC

 table

tra
rgy
re-
t,
cy
y
ot
its
y
he

ed
nd
o-
hat
to

on
y-
do

oes
but
by
m-
ay

, we

r
t-
ti-
and
5
-

ial
the

ng
n
ect
e
ts,
PC. Because i-cache accesses occur at the beginning of the
pipeline, we use the PC of the previous access for way-pre-
diction. Way-prediction is performed along with branch
prediction so that way-prediction does not add any delay to
the i-cache access. By the time the previous i-cache access
is complete, the next predicted PC and the predicted way
are ready.

Existing high-performance processors use a branch tar-
get buffer (BTB) to determine the next fetch address for
predicted taken branches. Next-line-set-prediction supplies
a way-prediction for taken branches [9]. We extend this
concept to provide way-predictions when the next address
does not come from the BTB. For not-taken branches and
sequential fetches (non-branches), we use an extra table
called the Sequential Address Way-Predictor (SAWP)
table, which is indexed by the current PC. At first glance,
the SAWP might seem unnecessary, because the incre-
mented PC would map to the same way as the current PC.
However, successive PCs may not fall within the same way.
For function returns, we augment the return address stack
(RAS) to provide not only the return address but also the
return address’s way. Figure 3 depicts the fetch hardware.
Shaded components are not present in a conventional sys-
tem but are part of our way-prediction mechanism.

On a branch misprediction, the correct next PC comes
from branch resolution in the processor. There is not
enough time between the resolution and the next fetch to
look up a way-prediction structure. Because branch
mispredictions are infrequent, our scheme defaults to par-
allel access. It is also possible that the way-prediction
structures do not return a prediction (i.e., the current PC
misses in the way-prediction structures). In that case too,
our scheme defaults to parallel access.

A correctly way-predicted fetch (irrespective of whether
it is correctly branch predicted or not), accesses the tag
array and the predicted data way. Way mispredicted fetches

probe the matching data way a second time, incurring ex
energy and access time, exactly as in d-caches. The ene
and access time are identical to those of d-cache way-p
diction given in Section 2.1. In our results, we show tha
unlike d-caches, i-caches exhibit way-prediction accura
high enough to make energy and time penalty of wa
mispredictions small. The small penalty means we do n
need selective-DM for i-caches. Our scheme adds log n b
to each entry of the BTB, SAWP and RAS for an n-wa
set-associative i-cache. In our results, we account for t
energy overhead due to this addition.

3 Methodology

Table 1 shows the base configuration for the simulat
systems. The papers that explored way-prediction [10] a
selective-DM [4] show that the access time of a set-ass
ciative cache employing these techniques is less than t
of a parallel access cache. Because we do not want
revisit this aspect and we want to isolate energy reducti
from access time improvements in calculating energ
delay, we conservatively assume that these techniques
not change access times. Note that this assumption d
not give our energy-saving techniques any advantage,
actually accentuates any performance loss incurred
them. In Section 4.1, Section 4.2, and Section 4.3, we co
pare our techniques against an aggressive, 1-cycle, 4-w
set-associative parallel access cache, and in Section 4.4
compare against a more realistic 2-cycle cache.

We modify Wattch [6] and incorporate SimpleScala
3.0b [8] modifications to simulate a high-performance ou
of-order microprocessor executing the Alpha ISA. We es
mate overall processor energy using Wattch and cache
prediction table energy using Cacti scaled for a 0.2
micron process [18]. To ensure that cache circuitry is com
patible with parallel, serial, direct-mapped, and sequent
accesses, all caches use set-associative geometry for
address decoding and output logic. In configurations usi
way-prediction or selective direct mapping, our predictio
tables have 1024 entries. In systems using selective dir
mapping, our victim list has 16 entries. Table 2 shows th
benchmarks used for our study, the corresponding inpu

branch target
 buffer

branch direction predictor

current

increment PC

roll back (rare)

select

Next

way
sequential
access
way
predictor
(SAWP)

 prediction

To i-cache
PC

ret addr stack

PC

FIGURE 3: Fetch and i-cache access mechanism .

Table 1: System configuration parameters.
Instruction issue &
decode bandwidth

8 issues per cycle

L1 i-cache 16K, 4-way, 1 cycle

Base L1 d-cache 16K, 4-way, 1 or 2 cycles, 2 ports

L2 cache 1M, 8-way, 12 cycle latency

Memory access latency 80 cycles + 4 cycles per 8 bytes

Reorder buffer size 64

LSQ size 32

Branch predictor 2-level hybrid

in
ves

de-
at
te
ic-
y

ed
g
t-
n
er
sso-
s
at
n
%.

n-
les
rgy
ss,
ess
s to
ir

y.
s
he
che
ead
the
is
he
of

ess
of
r-

cle,
for-
d-

ed
e

and the number of dynamic instructions executed.
Modern caches typically use subarrays at the circuit-

level to optimize for speed and energy. We assume an
energy-efficient baseline cache, which activatesonly the
subarrays containing the addressed set (including all the
ways in the set) and not all the subarrays. Subarrays, how-
ever, cannot reduce the energy wasted in reading all the
ways of a conventional set-associative cache. Therefore
subarrays, even if energy efficient, do not nullify the sav-
ings achieved by our techniques. It is possible that activat-
ing only the subarrays containing the addressed set may
encroach upon timing constraints. In that case, additional
opportunities to save the resulting subarray energy wastage
exist, and may be exploited by extending our techniques.
Such extensions are beyond the scope of this paper.

We also modify Cacti to compute the energy component
of our prediction structures. This component is included in
all the relevant energy calculations but is always less than
1% of the conventional d-cache energy because our predic-
tion tables and victim lists are small (less than 1 K and 0.06
KB respectively). We include the tag array energy, which is
about 6% of the conventional d-cache energy, inall calcu-
lations even though our techniques optimize only the data
array energy and not the tag array energy, as mentioned at
the beginning of Section 2. Similarly, we include both
loads and stores in all calculations, although our optimiza-
tions do not apply to stores.

4 Results

We present cache energy-delay in Section 4.1 through

Section 4.4, and overall processor energy-delay
Section 4.5. Section 4.1 shows that sequential access sa
energy at the cost of performance and hence is an ina
quate solution for energy savings. Section 4.2 shows th
way-prediction based on early available PC is inaccura
and does not reduce energy-delay much, and way-pred
tion based on late available XOR approximation ma
impact timing. Section 4.3 shows that selective-DM bas
on PC significantly reduces energy without introducin
timing problems. In Section 4.4, we vary cache size, se
associativity, and latency, showing that selective-DM is a
effective means of energy reduction for larger and slow
caches and that the energy savings increase with set-a
ciativity. In Section 4.5, we show that way-prediction i
effective for i-caches. Finally, in Section 4.5, we show th
combining selective-DM for d-caches and way-predictio
for i-caches reduces overall processor energy-delay by 8

4.1 Energy savings in sequential access d-caches

In this section we discuss performance and energy co
siderations for a sequential access, assuming two cyc
per access. Because this configuration avoids the ene
wastage of reading multiple ways during a cache acce
we expect significant energy savings over a parallel acc
cache. However, we expect sequential access cache
incur significant performance degradation due to the
respectively higher miss ratios and longer access latenc

Cacti simulations indicate that avoiding parallel read
results in significant energy savings. Table 3 shows cac
energy dissipation for parallel and sequential access ca
reads as well as cache writes. As expected, the parallel r
dissipates approximately four times as much energy as
sequential read. It is worth noting that the write energy
not affected by the read configuration because all cac
writes probe only one way, as mentioned at the end
Section 2.1.

While sequential access allows all cache reads to acc
only one way, the energy savings comes at the expense
performance. Figure 4 shows energy-delay and perfo
mance for a sequential-access cache relative to a 1-cy
parallel access cache. The black bars represent per
mance degradation; the lighter bars represent relative
cache energy delay (i.e., relative d-cache energy multipli
by relative execution time for each application). Whil

Table 2: Applications and input sets.
name input #of inst(billions)

Integer benchmarks
gcc ref 0.345
go ref 1.07
li train 0.207
m88ksim train 0.135
perl train 1.07
troff train 0.051
vortex test 1.07

Floating point benchmarks
applu train 1.07
fpppp train 0.234
mgrid train 1.07
swim test 0.492

Table 3: Cache energy and prediction overhead.
Energy component Relative Energy
Parallel access cache read (4 ways read) 1.00
Sequential-access, way-predicted, or direct-map-
ping access (1 way read)

0.21

Cache write 0.24
Tag array energy (also included in all above rows) 0.06
1024 entry x 4 bit prediction table read/write 0.007

FIGURE 4: Sequential-access cache energy-delay.

Relative Energy-Delay Performance Degradation

applu li mgrid
sw

im
fpppp

go
m88ksi

m
perlgcc tro

ff
vorte

x

O
ve

ra
ll

Pe
rfo

rm
an

ce
 L

os
s

0.0

0.2

0.4

0.0

0.2

0.4

C
ac

he
 R

el
at

iv
e

E-
D

el
ay

e

C
to

or-
ions
rel-
rly
the
all
the
n,
tial
rgy
e

for-
nd

e
o
ry
tes
e
r
a a
the
s-

to
sequential access achieves energy-delay savings of 68%
over a parallel access cache by always accessing only one
way, the average performance degradation 11% (maximum
degradation is 18%) for the sequential access cache.

The primary reason for this degradation is the substan-
tial latency increase for the sequential access cache. that
occurs becauseeveryaccess takes two cycles. This weak-
ness means sequential access is not an acceptable solution
for energy reduction in high performance d-caches.

4.2 Energy savings in way-predicted d-caches

In this section we discuss the accuracy, energy, and tim-
ing considerations for two forms of way-prediction. Way-
prediction may be based on either early available or late
available information, as discussed in Section 1. While use
the early available PC ensures timely way-prediction, we
expect PC-based way-prediction to experience low accu-
racy. Late available XOR-based approximation of the
block address should have higher accuracy. We assume an
additional cycle for mispredicted accesses.

Figure 5 shows our results for PC-based and XOR-
based way-prediction. The light and dark bars of the top
graph represent relative energy-delay and relative perfor-
mance with respect to a 1-cycle, parallel access cache. The
bottom graph depicts prediction accuracy for each scheme.

PC-based way-prediction has an average accuracy of
60% in contrast to XOR-based prediction’s 70%. The dif-
ference is consistent with the fact that the PC does not pro-
vide information about the actual address and is most
effective in exploiting per-instruction block locality. In
contrast, the XOR of the load address components is a rea-
sonable approximation of the block address. The bench-

marks with the lowest accuracy in the XOR-based schem
areapplu, mgrid,andswim,which have the highest cache
miss rates of 7%, 5%, and 25% respectively.

The differences in relative energy-delay between P
based and XOR based way-prediction are primarily due
variation in prediction accuracy and the associated perf
mance degradation. The average performance degradat
are 2.9% and 2.3% for each scheme, while the average
ative energy-delay reductions are 63% and 64%. The fai
low performance degradations occur because most of
applications can overlap the additional latency of a sm
number of mispredicted d-cache accesses. However,
lower energy-delay reduction of PC-based way-predictio
compared to the 68% energy-delay reduction of sequen
access cache, makes it a suboptimal solution for ene
reduction. A larger prediction table does not improve th
PC-based scheme’s accuracy (energy-delay and per
mance change less than 1% for a 2048 entry table), a
hence does not improve energy-delay reduction.

While XOR-based way-prediction is more accurate, th
technique must meet a difficult timing constraint in order t
avoid impacting the cache critical path. For a 1024-ent
prediction table, the size suggested in [10], Cacti estima
that table lookup time is 48% of the 16K 4-way cach
access time itself. The lookup time is likely to be large
than the time required to compute the actual address vi
full add, delaying the cache access. This result makes
XOR scheme hard to implement in high-performance sy
tems.

4.3 Obviating way-predictions with selective-DM

In this section, we evaluate the use of selective-DM

FIGURE 5: PC- and XOR-based way-prediction .

E X

E: PC-based X: XOR-based

W
ay

-P
re

di
ct

io
n

Ac
cu

ra
cy

 (%
)

applu li mgrid
sw

im
fpppp

go
m88ksi

m
perlgcc tro

ff
vorte

x

0.0

0.2

0.4

0.6

C
ac

he
 R

el
at

iv
e

En
er

gy
-D

el
ay

0

40

80

Relative Energy-Delay Performance Degradation (scale at far right)

PWSE2

E: PC-based 2: Sequential
W: Sel-DM + Way-predP: Sel-DM + Parallel

Direct-mapped Parallel Way-Predicted
Sequential Misprediction

applu li mgrid
sw

im
fpppp

go
m88ksi

m
perlgcc tro

ff
vorte

x

Relative Energy-Delay (scale at far left) Performance Degradation

0.0

0.4

0.8

Ac
ce

ss
 B

re
ak

do
w

n

S: Sel-DM + Sequential

O
ve

ra
ll

Pe
rfo

rm
an

ce
 D

eg
ra

da
tio

n

0.0

0.2

0.4

0.6

FIGURE 6: Selective-DM schemes.

his
ed
er-

ar-
ne

t-
he
ess
e-
n
ge
n-
on
ss.
er-
age
a-
%
%

e-

y-
ion
lec-
or
ow

l
%
e
-

ls
ve
reduce d-cache energy and obviate the need for way-pre-
diction for most accesses. Selective-DM uses the PC to
predict direct-mapping placement for the majority non-
conflicting d-cache accesses, avoiding the timing and accu-
racy concerns of way-prediction. The non-conflicting
accesses probe only the direct-mapping way, avoiding the
energy wastage of parallel access. For the remaining con-
flicting accesses, we evaluate the use of parallel, way-pre-
dicted, and sequential access for their impact on energy
and performance. We expect the combination of selective-
DM and way-prediction to approach the low energy dissi-
pation of a sequential access cache while maintaining per-
formace close to that of a parallel access cache. As before,
a mispredicted access due to either way-prediction or
selective-DM takes an extra cycle.

Figure 6 depicts our results for selective-DM. As in ear-
lier sections, the top graph shows energy-delay and perfor-
mance degradation relative to a system using a 1-cycle,
parallel access cache. The leftmost bar for each application
represents selective-DM in combination with parallel
access. The second bar depicts selective-DM supplemented
with PC-based way-prediction for the remaining accesses.
The third bar shows selective-DM with sequential access
for conflicting cache reads. The fourth and fifth bars are
PC-based way-prediction and sequential access; they are
repeated from earlier graphs for reference. The bottom
graph breaks down the various types of cache accesses:
direct-mapped, parallel, way-predicted, sequential, and
mispredicted, which includes both incorrect way-predic-
tions and accesses mispredicted as direct-mapped.

Selective-DM correctly predicts an average of 77% of
all d-cache reads as non-conflicting accesses. Such accu-
racy is reasonable considering: (1) selective-DM uses PC
to predict, and (2) selective-DM identifies more than 60%
of cache accesses as non-conflicting even for applications
requiring set-associativity. This claim is borne out by
Table 4, which shows that there are significant differences
in the miss rates between direct-mapped and conventional
4-way set-associative cache except forswimwhich experi-
ences pathological misses in the 4-way cache. As was the
case for PC-based way-prediction, increasing the size of
the prediction table does not impact the prediction accu-
racy of selective-DM.

Unfortunately, using parallel access for the conflicting
accesses incurs high energy dissipation. These parallel
accesses are the primary contributor to the low energy-
delay reduction (average of 59%) and low performance
degradation (average of 2.0%) of this configuration. Only
conflicting accesses mispredicted as DM, averaging 6% of

cache reads per application, incur a latency penalty. T
lower penalty is a significant improvement over PC-bas
way-prediction which consumes an extra cycle on an av
age of 40% of accesses due to low accuracy. All DM
accesses correctly predicted as non-conflicting and all p
allel accesses predicted conflicting have a latency of o
cycle.

The high energy parallel access energy of the conflic
ing accesses may be eliminated in one of two ways. T
conflicting accesses may be converted to sequential acc
or way-predicted. The simplest choice is to use selectiv
DM in combination with sequential access, achieving a
average energy-delay reduction of 73% with an avera
performance degradation of 3.4%. An incremental exte
sion to this scheme adds a way number to the predicti
table, allowing way-prediction instead of sequential acce
Adding PC-based way-prediction decreases average p
formance degradation to 2.4% but also decreases aver
energy-delay reduction to 69%. Both of these configur
tions achieve energy-delay savings above the 68
achieved by sequential access, without incurring its 11
performance degradation.

Of the two configurations discussed above, selectiv
DM plus way-prediction is slightly better for performance
because it maintains one-cycle latency for correctly wa
predicted accesses. However, each additional mispredict
causes an energy-wasting second probe. Conversely, se
tive-DM plus sequential access is the better choice f
energy because all conflicting accesses dissipate l
energy in this scheme. The only two exceptions aremgrid
and swim, in which the configurations with sequentia
access and way-prediction have energy delays within 1
of each other. For mgrid, over 99% of cache accesses ar
nonconflicting; therefore the choice of handlers for con
flicting accesses is irrelevant. Forswim, the d-cache miss
rate is approximately 25% so the L2 cache latency contro
performance more than the extra cycle required to retrie
conflicting cache hits.

Table 4: D-cache miss rates.
Technique applu fpppp gcc go li m88ksim mgrid perl swim troff vortex
Direct-mapped 8.2 6.3 5.1 5.9 4.7 3.5 5.4 3.0 23.3 2.7 3.1
4-way Set-associative 7.0 0.5 3.3 2.0 3.3 1.3 5.1 1.3 25.2 0.8 1.8

Table 5: D-cache summary.
Technique % Avg.

E-delay
savings

% Avg.
Perf. Loss

Problem

Sequential-Access cache 68 11 high perf.
degradation

PC-based way-prediction 63 2.9 low e-savings
XOR-based way-prediction 64 2.3 timing
Sel-DM +parallel access 59 2.0 low e-savings
Sel-DM +way-prediction 69 2.4
Sel-DM +sequential access 73 3.4

for
n)
to
gy

y
ed
rgy
e 8
o-
ith
sso-
g
2-

%

ay
e to

8-

ia-
e

tly
is

he
ses
cia-
t
M
in

on-
ors
In Table 5, we summarize the energy-delay and perfor-
mance of the various d-cache design options. From this
table it is clear that selective-DM supplemented with
sequential access or way-prediction achieve the highest
energy-delay reduction with least performance degrada-
tion. The rest of the options achieve low energy-delay
reduction or high performance degradation, or have critical
path timing problems.

4.4 Effect of cache parameters on selective-DM

In this section we evaluate the effect of varying conven-
tional cache parameters on selective-DM schemes. First,
we discuss the impact of increasing the cache size to 32K.
Second, we evaluate the energy savings for 2-way and 8-
way set-associative caches in addition to the 4-way caches
already studied. Finally, we evaluate the impact of increas-
ing the base d-cache latency from 1 cycle to 2 cycles.

We do not expect an increase in cache size to impact
substantially the opportunity for energy savings. Figure 7
compares the results for selective-DM plus PC-based way-
prediction for 16K and 32K caches. Relative energy-delay
is computed with respect to a 1-cycle, parallel access 4-
way cache of the same size. The results indicate that the
32K cache achieves an average energy-delay savings of
63% with an average performance degradation of 2.1%.
These numbers are similar to the averages of 69% and
2.4% for 16K caches. The primary reason for the decrease
in savings as size increases is because certain energy com-
ponents not affected by our scheme, such as tag energy and
address decode, increase slightly as proportion of total
cache energy. It is also worth noting that the misprediction
rate did not increase even though we did not scale the size
of the 1024 entry prediction table for the 32K cache. The
reason is our prediction is based on the PC, not the block

address, and the table does not need additional entries
the added cache sets. Additional simulations (not show
indicate that increasing the size of the prediction table
2048 entries has minimal effect on performance or ener
(< 0.2% change for both) for the 32K cache.

Unlike size, increasing set-associativity significantl
increases the opportunity for energy savings. As discuss
in Section 2, an N-way parallel access cache wastes ene
by accessing (N-1) more ways than necessary. Figur
shows results for 16K 2-way, 4-way, and 8-way set-ass
ciative caches. Relative energy-delay is computed w
respect to a 1-cycle, parallel access cache of the same a
ciativity. The graph clearly depicts the trend of increasin
energy savings; the average energy-delay reduction for
way, 4-way, and 8-way caches is 38%, 69%, and 82
respectively. One problematic application,swim, experi-
ences substantial performance degradation in the 8-w
case because pathological conflicts cause the miss rat
increase more than 5% above that of a parallel access
way cache.

Two additional trends relating to increased set-assoc
tivity are apparent from the bottom graph of Figure 8. Th
first is that the number of mispredictions increases sligh
with set-associativity because a random way-prediction
less likely to be correct when there are more ways. T
second trend is that the number of non-conflicting acces
does not decrease dramatically with increasing set-asso
tivity, helping selective-DM to scale well. The fact tha
most accesses remain non-conflicting allows selective-D
to exploit the increased energy-saving opportunity
highly associative caches.

Finally, we show results for selective-DM when the
base d-cache latency is increased to 2 cycles. As interc
nect latencies become more significant, microprocess

FIGURE 7: Effect of cache size on selective-DM.

B: 32KA: 16K

Direct-mapped Way-Predicted Misprediction

ABC
ac

he
 R

el
at

iv
e

En
er

gy
-D

el
ay

O
ve

ra
ll

Pe
rfo

rm
an

ce
 D

eg
ra

da
tio

n

applu li mgrid
sw

im
fpppp

go
m88ksi

m
perlgcc tro

ff
vorte

x

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6
Relative Energy-Delay Performance Degradation

0.0

0.4

0.8

Ac
ce

ss
 B

re
ak

do
w

n

FIGURE 8: Effect of associativity on selective-DM .
Direct-mapped Way-Predicted Misprediction

8: 8-way4: 4-way2: 2-way

2 4 8C
ac

he
 R

el
at

iv
e

En
er

gy
-D

el
ay

O
ve

ra
ll

Pe
rfo

rm
an

ce
 D

eg
ra

da
tio

n

Relative Energy-Delay Performance Degradation

applu li mgrid
sw

im
fpppp

go
m88ksi

m
perlgcc tro

ff
vorte

x

0.0

0.4

0.8

0.0

0.4

0.8

0.0

0.4

0.8

Ac
ce

ss
 B

re
ak

do
w

n

n
ll

y-
ch
in

pre-
on
our
as

n

ay
2-
ge
ly.

ifi-
tu-
ss

u-
c-

or
r

ur
ate
on
v-
have trended toward 2 cycle d-cache accesses where one
cycle consists of wire delay. When selective-DM plus way-
prediction, Selective-DM plus sequential access, or
sequential access is applied in this situation, a mispredicted
or sequential access requires a total of 3 cycles. An out-of-
order engine may not be able to absorb this latency without
impacting performance.

Figure 9 depicts results for selective-DM plus way-pre-
diction, selective-DM plus sequential access, and sequen-
tial access for a 2 cycle d-cache. Energy-delay values are
relative to a 2-cycle, parallel access cache. Selective-DM
plus way-prediction and Selective-DM plus sequential
access achieve average energy-delay savings of 69% and
73% respectively with average performance degradation of
2.0% and 3.1% respectively. These results are similar to
those for the 1 cycle cache, and the small performance deg-
radation indicates the system can absorb the additional
latency of some three cycle accesses. In contrast, sequen-
tial access incurs performance degradation of nearly 13%,
2% worse than with a 1 cycle cache. This additional degra-
dation indicates that the system cannot absorb the latency
of all d-cache access being 3 cycles without substantial
performance impact.

4.5 Way-prediction for i-caches

In this section we evaluate energy reduction for i-caches
using way-prediction as discussed in Section 2.3. Because
i-cache way-prediction extends from existing, highly accu-
rate fetch address prediction, we expect to capture nearly
all accesses and achieve high energy savings. As with d-
caches, we expect energy savings to increase with set-asso-
ciativity.

Figure 10 shows results for 16K 2-way, 4-way, and 8-
way i-caches using a 1024 entry SAWP. As in previous sec-
tions, the top graph depicts energy-delay and performance
degradation relative to a 1-cycle, parallel access i-cache.
From bottom to top, the subbars on the bottom graph repre-
sent accesses correctly predicted by the SAWP, accesses
correctly predicted using the branch predictor (BTB and
RAS), parallel accesses not predicted, and mispredicted
accesses.

From the bottom graph, we see that overall predictio
accuracy is high. Accuracy is greater than 92% for a
applications exceptfpppp, which has a large, conflicting
code footprint that thrashes in the i-cache, lowering wa
prediction accuracy. As indicated by the graph, the bran
predictor most strongly contributes to correct predictions
branch-intensive integer applications such asgo, li, and
m88ksim. Floating point applications with longer basic
blocks, such asapplu, mgrid,andswimuse SAWP for well
over 75% of i-cache accesses. The only accesses not
dicted by our scheme are BTB misses and mispredicti
restarts. Predicting such a wide range of accesses gives
scheme an energy advantage over alternatives such
Next-line-set-prediction, which only way-predicts take
branches.

The top graph indicates we achieve high energy-del
savings with negligible performance degradation. For
way, 4-way, and 8-way set-associative caches, avera
energy-delay savings are 39%, 64%, and 72% respective
As with d-caches, energy-delay savings increases sign
cantly with set-associativity because of increased oppor
nity for energy savings. Performance degradation is le
than 0.5% for all applications exceptfpppp,which incurs
high misprediction rates. Because of high prediction acc
racy and minimal performance degradation, way-predi
tion is highly effective in reducing i-cache energy.

4.6 D- and I-cache: processor energy-delay savings

In this section, we present results for overall process
energy-delay when selective-DM plus way-prediction fo
d-caches is combined with i-cache way-prediction. O
simulations indicate L1 i-caches and d-caches dissip
10% to 16% of the overall processor energy, depending
the application. Out of this achievable overall energy sa

FIGURE 9: Selective-DM schemes (high-latency).

WS2

2: SequentialS: Sel-DM + SequentialW: Sel-DM + Waypred
Relative Energy-Delay Performance Degradation

applu li mgrid
sw

im
fpppp

go
m88ksi

m
perlgcc tro

ff
vorte

x

C
ac

he
 R

el
at

iv
e

En
er

gy
-D

el
ay

O
ve

ra
ll

Pe
rfo

rm
an

ce
 D

eg
ra

da
tio

n

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

FIGURE 10: Way-prediction for i-caches.
Table correct BTB correct No prediction Misprediction

8: 8-way4: 4-way2: 2-way

2 4 8C
ac

he
 R

el
at

iv
e

En
er

gy
-D

el
ay

O
ve

ra
ll

Pe
rfo

rm
an

ce
 D

eg
ra

da
tio

n

Relative Energy-Delay Performance Degradation

applu li mgrid
sw

im
fpppp

go
m88ksi

m
perlgcc tro

ff
vorte

x

0.0

0.4

0.8

0.0

0.4

0.8

0.0

0.4

0.8

Ac
ce

ss
 B

re
ak

do
w

n

c-
es
or
ess
If
he
M

or
ays
ks,
.
y-

out
re

lec-
on
m,
h-

g
ing
e)
s

i-
se
l-
ing
r-
al.
s
not

ss-

e
key
-
y

d is

h-

h
p-
e-
e

ings, performance degradation lessens actual savings due
to the energy dissipated by the processor in the extra
cycles.

Figure 11 depicts relative energy-delay, performance
degradation, and relative overall energy. The top graph
shows energy-delay and performance degradation relative
to a processor using 1-cycle, parallel access i- and d-
caches; the bottom graph shows relative energy. For d-
caches, we use selective-DM plus way-prediction as in
Section 4.3. For i-caches, we use way-prediction as in
Section 4.5. Note that there are two differences with
respect to previous graphs: relative energy-delay and per-
formance degradation are on different scales, and relative
energy-delay starts from 0.8.

Our average relative energy savings is 9% with most
applications experiencing savings between 6% and 12%.
Taking into account performance degradation, the average
relative energy-delay reduction is 8%, compared to a 10%
reduction assuming perfect way-prediction and no perfor-
mance degradation. Most applications experience energy-
delay savings between 3% and 10%.

The only exception among the applications ism88ksim,
which experiences a pathological speedup as a result of i-
cache way-prediction. Way-prediction misses in the BTB
allow additional time for branch resolution, substantially
increasing branch prediction accuracy and resulting in a
15% speedup. None of our other applications exhibit this
behavior.

5 Related Work

Selective cache ways [2] pioneered reducing cache
energy by turning off unneeded ways in a set-associative
cache. Our techniques are orthogonal to selective cache
ways in that our techniques can be used on the ways that
are left active by selective cache ways. Apart from this

orthogonality, there are important differences. First, sele
tive cache ways is a coarse-grain approach which decid
whether an entire application requires set associativity
not. In contrast, selective-DM decides whether each acc
requires set-associativity or not (i.e., conflicting or not).
an application uses all the cache ways, selective cac
ways cannot achieve any energy savings but selective-D
can filter out the majority non-conflicting accesses. F
instance, using a 32K 2-way d-cache, selective cache w
cannot achieve any savings in six of the eight benchmar
including fpppp,with less than 4% performance loss [2]
Selective-DM plus way-prediction achieves 38% energ
delay reduction for a 16K 2-way d-cache, including 37%
for fpppp, with similar performance loss. Note that it is
harder to achieve energy savings in a smaller cache with
impacting performance, and selective-DM achieves mo
relative energy savings for a smaller cache. Second, se
tive cache ways requires manual or software configurati
to choose the number of active cache ways per progra
but selective-DM is a transparent, hardware-only tec
nique.

Other proposals that specifically focused on reducin
cache energy dissipation. Many of these propose plac
small energy-efficient buffers (e.g., 128-256 bytes in siz
in front of caches to filter traffic to the cache. Example
include block buffers [7,17], filter cache [15], and loop
cache [5]. Filtering, however, is only effective when appl
cation working sets are extremely small and is otherwi
not applicable. Moreover, when working sets do not fit, fi
tering increases the critical path access time for access
cached information and may significantly reduce perfo
mance. To reduce leakage energy dissipation, Powell, et
[19], propose a dynamically resizing i-cache, and Kaxira
et al. [14] propose using cache decay. These papers do
address dynamic energy, but only leakage energy.

6 Conclusions

Set-associative caches minimize access time by acce
ing all the data ways inparallel with the tag lookup,
although the output of only the matching way is used. Th
energy spent accessing the other ways is wasted. The
to energy reduction is to pinpoint the matching way with
out probing all of the ways. Eliminating the wasted energ
by performing the data lookupsequentiallyfollowing the
tag lookup substantially increases cache access time, an
unacceptable for high-performance L1 caches.

In this paper, we applied two previously-proposed tec
niques, way-prediction and selective direct-mapping,to
reducing L1 cache dynamic energy while maintaining hig
performance. Way-prediction and selective direct-ma
ping predict the matching way number and provide the pr
diction prior to the cache access, instead of waiting on th

applu li mgrid
sw

im
fpppp

go
m88ksi

m
perlgcc tro

ff
vorte

x

R
el

at
iv

e
Pr

oc
es

so
r E

-D
el

ay Relative Energy-Delay Performance Degradation

0.8

0.9

1.0

R
el

at
iv

eP
ro

ce
ss

or
 E

ne
rg

y

Pe
rfo

rm
an

ce
 D

eg
ra

da
tio

n

0.8

0.9

1.0

0.0

0.1

0.2

0.69

energy-delay savings
for perfect way-prediction

FIGURE 11: Overall processor energy.

-
In
w

,
es
e

e-
n

n-

c-

l-
C

s

gy
-

-
In
n

-

:

er

r
n
w

nd
3/
b-

h
ce
h

tag array to provide the way number as done by sequential
access. Predicting the matching way enables the techniques
not only to attain fast access times but also to achieve
energy reduction. The techniques reduce energy because
only the predicted way is accessed. While these techniques
were originally proposed to improve set-associative cache
access times, this is the first paper to apply them to reduc-
ing energy.

We evaluated the effectiveness of these techniques in
reducing L1 d-cache, L1 i-cache, and overall processor
energy. Using these techniques, our caches achieve the
energy-delay of sequential access while maintaining the
performance of parallel access. Relative to parallel access
L1 i- and d-caches, the techniques achieve overall proces-
sor energy-delay reduction of 8%, while perfect way-pre-
diction with no performance degradation achieves 10%
reduction. This overall reduction combines L1 d-cache
energy-delay reduction of 69% and L1 i-cache energy-
delay reduction of 64%. The performance degradation of
the techniques is less than 3%, compared to an aggressive,
1-cycle, 4-way, parallel access cache.

Acknowledgements

This research is supported in part by SRC under con-
tract 2000-HJ-768, DARPA under contract DAAH04-96-1-
0222 and an NSF Graduate Research Fellowship.

References

[1] S. G. Abraham, R. A. Sugumar, D. Windheiser, B. R.
Rau, and R. Gupta. Predictability of load/store instruction
latencies. InProceedings of the 26th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO
26), pages 139–152, Dec. 1993.

[2] D. H. Albonesi. Selective cache ways: On-demand cache
resource allocation. InProceedings of the 32nd Annual
IEEE/ACM International Symposium on Microarchitec-
ture (MICRO 32), pages 248–259, Nov. 1999.

[3] T. M. Austin and G. Sohi. Zero-cycle loads: Microarchi-
tecture support for reducing load latency. InProceedings
of the 28th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO 28), Dec. 1995.

[4] B. Batson and T. N. Vijaykumar. Reactive associative
caches. InProceedings of the 2001 International Confer-
ence on Parallel Architectures and Compiliation, Sept.
2001.

[5] N. Bellas, I. Hajj, and C. Polychronopoulos. Using dy-
namic management techniques to reduce energy in high-
performance processors. InProceedings of the 1999 Inter-
national Symposium on Low Power Electronics and De-
sign (ISLPED), pages 64–69, Aug. 1999.

[6] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A
framework for architectural-level power analysis and op-
timizations. InProceedings of the 27th Annual Interna-

tional Symposium on Computer Architecture, pages 83–
94, June 2000.

[7] J. Bunda, W. Athas, and D. Fussell. Evaluating power im
plications of CMOS microprocessor design decisions.
Proceedings of the 1994 International Symposium on Lo
Power Electronics and Design (ISLPED), pages 147–152,
Apr. 1994.

[8] D. Burger and T. M. Austin. The SimpleScalar tool set
version 2.0. Technical Report 1342, Computer Scienc
Department, University of Wisconsin–Madison, Jun
1997.

[9] B. Calder and D. Grunwald. Next cache line and set pr
diction. InProceedings of the International Symposium o
Computer Architecture, pages 287–296, Nov. 1995.

[10] B. Calder, D. Grunwald, and J. Emer. Predictive seque
tial associative cache. InProceedings of the Second IEEE
Symposium on High-Performance Computer Archite
ture, Feb. 1996.

[11] J. H. Edmondson and et al. Internal organization of the A
pha 21164, a 300-MHz 64-bit quad-issue CMOS RIS
microprocessor.Digital Technical Journal, 7(1), 1995.

[12] M. Gowan, L. Biro, and D. Jackson. Power consideration
in the design of the alpha 21264 microprocessor. In35th
Design Automation Conference, 1998.

[13] K. Inoue, T. Ishihara, and K. Murakami. Way-predicting
set-associative cache for high performance and low ener
consumption. InProceedings of the International Sympo
sium on Low Power Electronics and Design, pages 273–
275, Aug. 1999.

[14] S. Kaxiras, Z. Hu, and M. Martonosi. Cache decay: Ex
ploiting generational behavior to reduce leakage power.
Proceedings of the 27th International Symposium o
Computer Architecture (ISCA), July 2001.

[15] J. Kin, M. Gupta, and W. H. Mangione-Smith. The filter
cache: An energy efficient memory structure. InProceed-
ings of the 30th Annual IEEE/ACM International Sympo
sium on Microarchitecture (MICRO 30), pages 184–193,
Dec. 1997.

[16] S. Manne, A. Klauser, and D. Grunwald. Pipline gating
Speculation control for energy reduction. InProceedings
of the 25th Annual International Symposium on Comput
Architecture, pages 132–141, June 1998.

[17] C.-L. Su and A. M. Despain. Cache design trade-offs fo
power and performance optimization: A case study. I
Proceedings of the 1995 International Symposium on Lo
Power Electronics and Design (ISLPED), pages 63–68,
1995.

[18] S. J. E. Wilson and N. P. Jouppi. An enhanced access a
cycle time model for on-chip caches. Technical Report 9
5, Digital Equipment Corporation, Western Research La
oratory, July 1994.

[19] S. H. Yang, M. D. Powell, B. Falsafi, K. Roy, and T. N.
Vijaykumar. An integrated circuit/architecture approac
to reducing leakage in deep-submicron high-performan
i-caches. InSeventh International Symposium on Hig
Performance Computer Architecture (HPCA), Jan. 2001.

	Abstract
	1 Introduction
	2 Reducing cache access energy
	FIGURE 1: Access and timing for design options.
	2.1 Design options: performance and energy
	2.2 Way-prediction and selective-DM for d-caches
	2.2.1 Way-prediction
	2.2.2 Optimizing selective-DM: identifying conflicts
	FIGURE 2: Prediction framework for selective-DM.

	2.3 Way-prediction for i-caches
	FIGURE 3: Fetch and i-cache access mechanism.

	3 Methodology
	Table 1: System configuration parameters.
	Table 2: Applications and input sets.
	Table 3: Cache energy and prediction overhead.

	4 Results
	4.1 Energy savings in sequential access d-caches
	FIGURE 4: Sequential-access cache energy-delay.

	4.2 Energy savings in way-predicted d-caches
	FIGURE 5: PC- and XOR-based way-prediction.
	FIGURE 6: Selective-DM schemes.

	4.3 Obviating way-predictions with selective-DM
	Table 4: D-cache miss rates.
	Table 5: D-cache summary.
	FIGURE 7: Effect of cache size on selective-DM.

	4.4 Effect of cache parameters on selective-DM
	FIGURE 8: Effect of associativity on selective-DM.
	FIGURE 9: Selective-DM schemes (high-latency).

	4.5 Way-prediction for i-caches
	FIGURE 10: Way-prediction for i-caches.

	4.6 D- and I-cache: processor energy-delay savings
	FIGURE 11: Overall processor energy.

	5 Related Work
	6 Conclusions

	Acknowledgements
	References

